
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 4608
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

www.manaraa.com

Heinz W. Schmidt Ivica Crnkovic
George T. Heineman Judith A. Stafford (Eds.)

Component-Based
Software Engineering

10th International Symposium, CBSE 2007
Medford, MA, USA, July 9-11, 2007
Proceedings

13

www.manaraa.com

Volume Editors

Heinz W. Schmidt
RMIT University, Computer Science
124 La Trobe Street, Melbourne, VIC, 3001 Australia
E-mail: Heinz.Schmidt@rmit.edu.au

Ivica Crnkovic
Mälardalen University, Software Engineering Lab
721 23 Västerås, Sweden
E-mail: ivica.crnkovic@mdh.se

George T. Heineman
Worcester Polytechnic Institute, Department of Computer Science
100 Institute Road, Worcester, MA 01609, USA
E-mail: heineman@cs.wpi.edu

Judith A. Stafford
Tufts University, Computer Science
Boston, 161 College Avenue, Medford, MA 02155, USA
E-mail: jas@cs.tufts.edu

Library of Congress Control Number: 2007930208

CR Subject Classification (1998): D.2, D.1.5, D.3, F.3.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-73550-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-73550-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12088713 06/3180 5 4 3 2 1 0

www.manaraa.com

Preface

CBSE 2007, the Tenth International ACM SIGSOFT Symposium on Compo-
nent-Based Software Engineering was dedicated to the theme of “Global Software
Services and Architectures.”

Component-based software engineering (CBSE) has emerged as a key tech-
nology for developing and maintaining large-scale software-intensive systems,
such as global networked information systems and services, distributed real-
time automation systems, grids and sensor networks. CBSE combines elements
of object-oriented technologies, software architecture, software verification, mod-
ular software design, configuration and deployment. CBSE has made major in-
roads into mainstream networked software-intensive systems. If you are taking a
train, accessing your bank account or health insurance over the Internet, search-
ing and ordering a book or tracking its delivery, very likely CBSE is at work
in the distributed software enabling such everyday activities in transport, com-
merce, health, automation, environment and defense.

The CBSE Symposium has a track record of bringing together researchers
and practitioners from a variety of disciplines to promote a better understanding
of CBSE from a diversity of perspectives and to engage in active discussion and
debate. CBSE has been open to all participants interested broadly in component
software engineering. The symposium addresses participants from both univer-
sities and industry and combines formal refereed paper presentations, industrial
experience presentations, invited keynotes and expert working sessions on key
challenges that the field faces.

Scope

The theoretical foundations of component specification, composition, analysis
and verification continue to pose research challenges. While the engineering mod-
els and methods for component software development are slowly maturing, new
trends in global services and distributed systems architectures push the limits
of established and tested component-based methods, tools and platforms:

– Model-driven development and grid technologies with their high-performance
demands in massive data storage, computational complexity and global co-
scheduling of scientific models in flagship science, technology and medicine
research

– Global software development with its lowering of the cost of software capa-
bilities and production, through automation, off-shoring and outsourcing of
key components and subsystems

– Networked enterprise information systems and services architectures crossing
enterprise, national, legal and discipline boundaries

www.manaraa.com

VI Preface

– Shift from (globally distributed) software products to pervasive and ubiqui-
tous services supported by deep software-intensive infrastructures and mid-
dleware and by increasingly flexible, adaptive and autonomous client and
application server software

History

A decade ago, CBSE started off as a workshop of the International Software
Engineering Conference (ICSE), the flagship conference in software engineering.
While the CBSE community grew rapidly and demonstrated sufficient momen-
tum of its own and a focus on the special issues in theory and practice surround-
ing components, CBSE matured quickly into a standalone conference attracting
over 100 participants. In 2007, as in 2006, CBSE was co-located with software
architecture workshops and shared an industrial experience day across these
events.

Papers

Similar to previous years, the themes in the call for papers were broad:

– Software quality and extra-functional properties for components and
component-based systems

– Component-based Web services and service-oriented architectures
– Component software architectures and product lines
– Global generation, adaptation and deployment of component-based systems

and services
– Grid component software, services, workflows, co-ordination and

choreography
– Components and model-driven development
– Specification, verification, testing and checking of component systems
– Compositional reasoning techniques for component models
– Global measurement, prediction and monitoring of distributed and service

components
– Patterns and frameworks for component-based systems and services
– Integrated tool chains and methods for building component-based services
– Components for networked real-time information systems and sensor net-

works

In total, the call attracted some 89 papers of which 19 were selected for
publication and presentation after a rigorous review and selection process. Each
paper had at least three independent reviewers, papers of Program Committee
members, four.

www.manaraa.com

Preface VII

The papers in this volume represent a snapshot of current work at the fore-
front of CBSE. They are grouped into four broad themes:

– Component-Based Architectures and Change
– Quality of Service, Runtime Verification and Monitoring
– Challenges in Architectural Dynamics
– Extra-functional Properties and Compositional Reasoning

July 2007 Heinz W. Schmidt

www.manaraa.com

Organization

Organization Chair

Judith A. Stafford, Tufts University, Medford, USA

Program Chair

Heinz W. Schmidt, RMIT University, Melbourne, Australia

Steering Committee

Ivica Crnkovic, Mälardalen University, Väster̊as, Sweden
Ian Gorton, Pacific North West National Laboratory, Richland WA, USA
George Heineman, Worcester Polytechnic Institute, Worcester MA, USA
Heinz W. Schmidt, RMIT University, Melbourne, Australia
Judith A. Stafford, Tufts University, Medford, USA
Clemens Szyperski, Microsoft, Redmond, USA

Program Committee

Uwe Assmann, Dresden University of Technology, Dresden, Germany
Mike Barnett, Microsoft Research, Redmond WA, USA
Antonia Bertolino, CNR Research, Pisa, Italy
Judith Bishop, University of Pretoria, Pretoria, South Africa
Michel Chaudron, University Eindhoven, Eindhoven, The Netherlands
Shiping Chen, CSIRO, Sydney, Australia
Thierry Coupaye, France Telecom R&D, Grenoble, France
Susan Eisenbach, Imperial College London, London, UK
Dimitra Giannakopoulou, RIACS/NASA Ames, Moffet Field CA, USA
Ian Gorton, Pacific North West National Laboratory, Richland WA, USA
Lars Grunske, University of Queensland, Brisbane, Australia
Richard Hall, LSR-IMAG, Grenoble, France
Dick Hamlet, Portland State University, Portland OR, USA
George Heineman, Worcester Polytechnic Institute, Worcester MA, USA
Paola Inverardi, University of L’Aquila, L’Aquila, Italy
Jean-Marc Jezequel, IRISA (INRIA and Univ. Rennes 1), Rennes, France
Bengt Jonsson, Uppsala University, Uppsala, Sweden
Gerald Kotonya, Lancaster University, Lancaster, UK

www.manaraa.com

X Organization

Dean Kuo, University of Manchester, Manchester, UK
Magnus Larsson, ABB Corporate Research, Väster̊as, Sweden
Kung-Kiu Lau, University of Manchester, Manchester, UK
Michael Maximilien, IBM Almaden Research Center, San Jose CA, USA
Nenad Medvidovic, University of Southern California, Los Angelos CA, USA
Henry Muccini, University of L’Aquila, L’Aquila, Italy
Rob van Ommering, Philips Research Labs, Eindhoven, The Netherlands
Ralf Reussner, University of Karlsruhe, Karlsruhe, Germany
Christian Salzmann, BMW Car IT, Munich, Germany
Douglas Schmidt, Vanderbilt University, Nashville TN, USA
Jean-Guy Schneider, Swinburne University of Technology, Melbourne,

Australia
Asuman Sünbül, SAP Research, Palo Alto CA, USA
Wolfgang Weck, Independent Software Architect, Zürich, Switzerland
Dave Wile, Teknowledge Corp., Los Angelos CA, USA

www.manaraa.com

Table of Contents

Component-Based Architectures and Change

Data Encapsulation in Software Components . 1
Kung-Kiu Lau and Faris M. Taweel

Binary Change Set Composition . 17
Tijs van der Storm

Automated and Unanticipated Flexible Component Substitution 33
Nicolas Desnos, Marianne Huchard, Christelle Urtado,
Sylvain Vauttier, and Guy Tremblay

Dynamic Adaptation of Aspect-Oriented Components 49
Cristóbal Costa, Jennifer Pérez, and José Ángel Carśı

Component Based Game Development – A Solution to Escalating
Costs and Expanding Deadlines? . 66

Eelke Folmer

Quality of Service, Runtime Verification and
Monitoring

Performance Assessment for e-Government Services: An Experience
Report . 74

Yan Liu, Liming Zhu, and Ian Gorton

An Approach for QoS Contract Negotiation in Distributed
Component-Based Software . 90

Mesfin Mulugeta and Alexander Schill

A Study of Execution Environments for Software Components 107
Kung-Kiu Lau and Vladyslav Ukis

Monitoring Architectural Properties in Dynamic Component-Based
Systems . 124

Henry Muccini, Andrea Polini, Fabiano Ricci, and Antonia Bertolino

Extra-Functional Properties and Compositional
Reasoning

A Modeling Approach to Analyze the Impact of Error Propagation on
Reliability of Component-Based Systems . 140

Vittorio Cortellessa and Vincenzo Grassi

www.manaraa.com

XII Table of Contents

Performance-Driven Interface Contract Enforcement for Scientific
Components . 157

Tamara L. Dahlgren

Integration of Time Issues into Component-Based Applications 173
Sébastien Saudrais, Noël Plouzeau, and Olivier Barais

Slicing of Component Behavior Specification with Respect to Their
Composition . 189

Ondřej Šerý and Frantǐsek Plášil

An Execution-Level Component Composition Model Based on
Component Testing Information . 203

Gerardo Padilla, Carlos Montes de Oca, and Cuauhtemoc Lemus

Web Services, Late Composition and Verification

Capturing Web Services Provider Constraints - An Algorithmic
Approach . 211

Sudeep Mallick and S.V. Subrahmanya

Soya: A Programming Model and Runtime Environment for Component
Composition Using SSDL . 227

Patric Fornasier, Jim Webber, and Ian Gorton

Experience with Safe Dynamic Reconfigurations in Component-Based
Embedded Systems . 242

Juraj Polakovic, Sebastien Mazare, Jean-Bernard Stefani, and
Pierre-Charles David

A Framework for Contract-Based Collaborative Verification and
Validation of Web Services . 258

Xiaoying Bai, Yongbo Wang, Guilan Dai, Wei-Tek Tsai, and
Yinong Chen

Towards Composing Software Components in Both Design and
Deployment Phases . 274

Kung-Kiu Lau, Ling Ling, and Perla Velasco Elizondo

Author Index . 283

www.manaraa.com

Data Encapsulation in Software Components

Kung-Kiu Lau and Faris M. Taweel

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

{Kung-Kiu,Faris.Taweel}@cs.manchester.ac.uk

Abstract. Data encapsulation is a familiar property in object-oriented
programming. It is not only useful for modelling things in the real world,
but it also facilitates reuse by enabling the creation of multiple instances
of the same class, each with its own identity and private data. For CBSE,
this kind of reuse is clearly also one of the key desiderata. However, it
must be achieved in conjunction with composition, which is central to
CBSE. In this paper we show how data encapsulation can be combined
with composition, by extending a component model we have defined
previously.

1 Introduction

Data encapsulation is a familiar property of objects, as in object-oriented pro-
gramming. It is not only useful for modelling things in the real world, but it
also facilitates reuse by enabling the creation of multiple instances of the same
class, each with its own identity and private data. For CBSE, this kind of reuse
is clearly also one of the key desiderata, since components are considered to be
reusable templates for multiple component instances. However, since composi-
tion is central to CBSE, the question is how to design composition mechanisms
or operators that make data encapsulation possible at every level of composition,
that is, how to make sure that every composite component created by composi-
tion encapsulates its own data. In this paper, we argue that this combination of
data encapsulation and composition is not possible in current component mod-
els; and then show that it can be achieved by extending a component model that
we have defined previously.

Current component models can largely be divided into two categories [9,5]: (i)
models where components are objects, as in object-oriented programming; (ii)
models where components are architectural units, as in software architectures
[14,1]. Exemplars of these categories are Enterprise JavaBeans (EJB) [3,12] and
architecture description languages (ADLs) [2,10] respectively. In models where
components are objects, components are assembled by method calls. However,
this is not (algebraic) composition, since an object O1 assembled with an object
O2 by calling a method in O2 will result in two objects, not one (composite)
object. Therefore, even though data encapsulation is possible in O1 and O2

separately, there is no composition mechanism that can compose O1 and O2

properly, let alone preserve data encapsulation.

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 1–16, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

2 K.-K. Lau and F.M. Taweel

In component models where components are architectural units, port connec-
tions provide a composition mechanism, and composites can be defined. However,
data encapsulation is not always defined or possible. In fact, the role of data is
very unclear in architectural units. These units can represent both computation
and data, or just data, and data encapsulation is not considered as part of com-
position in general. Where architectural units have data ports, it could be argued
that these ports represent data encapsulation. Even in this case, however, it is
not clear whether data encapsulation is possible at every level of composition.

In this paper, we describe an approach to composition that allows data encap-
sulation at every level of composition. Our approach is based on a component
model [6] where composition operators are first-class citizens, and they also en-
able every component instance, in particular a composite component instance,
to encapsulate its own data.

2 Composition with Data Encapsulation

Components are intended for composition, and so they should be compositional,
i. e. if C1 and C2 are components, then a composition C3 of C1 and C2 must be a
component too. Furthermore, the composition should be defined as a composition
operator that composes components into new (composite) components. In other
words, in a component model, components and composition operators should be
first-class citizens. Any component model should have this property.

A good component model should also allow components to encapsulate data,
but to be really useful it should do so at every level of composition. We have
proposed a component model in [6] and in this paper we describe how we can
extend this model and use it to achieve this kind of data encapsulation.

For illustrative purposes, we shall consider a simple banking example.

Example 1. Consider a banking system with two bank consortia BC1 and BC2,
consisting of the sets of banks {B11, B12} and {B21, B22} respectively. Each
bank, in turn, consists of a set of branches, e.g. bank B21 has branches {BB211,
BB212}, and so on.

In our component model we would build up the system by composing com-
ponents using composition operators (see Fig. 2).

In our model, we have two kinds of components: atomic and composite com-
ponents. Composite components are built from atomic (and other composite)
components, but all components are templates, with no data except constants,

Bank Consortium BC2BC1

Bank Branch BB111 BB112 BB121 BB122 BB211 BB212 BB221 BB222

Bank B11 B12 B21 B22

Fig. 1. A banking example

www.manaraa.com

Data Encapsulation in Software Components 3

Atomic
Component

Composite Components Bank Consortium Copy 1 Bank Consortium Copy 2

BB111 BB112 BB121 BB122BB21 BB22 BB211 BB212 BB221 BB222BB11 BB12Bank
branch

B1 B2 B11 B12 B21 B22

BC BC1 BC2
Bank copy

Bank
Bank Consortium

Fig. 2. A component-based implementation of the banking system

but with code for the services they provide. Since components are templates, it
is meaningful and possible to make copies of components. For the bank system,
for a particular bank consortium, a bank branch can be an atomic component
with code for the usual operations like withdrawal, deposit and check balance.
This provides a template for all bank branches, and so we can construct many
bank branches (all the BB’s) as copies of this component.

Furthermore, in our model, it is possible to create instances from different
component copies. For example, bank branches BB111 and BB211, which are
different copies of BB11 (which is in turn a copy of the bank branch atomic
component), and which belong to different consortia, can be each instantiated
with their own address, sort code and customer accounts.

In our model, composite components, just like atomic components, can also
be copied (and the copies instantiated later). For example, two bank branches,
say BB11 and BB12, can be composed by a suitable composition operator to
produce a bank composite component B11. The latter is a template that contains
all the operations its sub-components provide. Therefore, it would make sense to
construct other bank components from this component by copying. The original
component as well as its copies contain, in addition to operations, some place
holders for private data that can be initialised when the complete (composite)
components are instantiated.

Similarly, a bank consortium component can be constructed by composing
bank components. In Fig.2, using a suitable composition operator, a bank com-
ponent composed with a copy of a bank component yields a bank consortium
component. This new component can be further composed with a copy of itself
to build the bank system.

It is worth noting that in the bank example, only one atomic component
(bank branch) and one composition operator are necessary to build the entire
bank system. Each composition in our implementation results in a properly
defined composite. Clearly our model provides proper composition mechanisms.
The question is whether we can also make it encapsulate data.

3 Our Component Model

Before we discuss how we extend our component model to enable data encapsu-
lation, in this section we briefly outline the model that we presented in [6].

www.manaraa.com

4 K.-K. Lau and F.M. Taweel

In our model, we have two kinds of basic entities: (i) computation units, and
(ii) connectors. A computation unit U encapsulates computation. It provides a
set of methods (or services). Encapsulation means that U ’s methods do not call
methods in other computation units; rather, when invoked, all their computation
occurs in U . Thus U could be thought of as a class that does not call methods
in other classes.

There are two kinds of connectors: (i) invocation, and (ii) composition. An
invocation connector is connected to a computation unit U so as to provide
access to the methods of U .

A composition connector encapsulates control. It is used to define and coordi-
nate the control for a set of components (atomic or composite). For example, a
sequencer connector that composes components C1, . . . , Cn can call methods in
C1, . . . , Cn in that order. Another example is a selector connector, which selects
(according to some specified condition) one of the components it composes, and
calls its methods.

Components are defined in terms of computation units and connectors. There
are two kinds of components: (i) atomic, and (ii) composite (see Fig. 3). An

IGIFFComputation
unit

Invocation
IFconnector

G

Encapsulation
(computation) (computation and control)

F

Encapsulation

(a) Atomic component (b) Composite component

connector
Composition Compositionality

Fig. 3. Atomic and composite components: encapsulation and compositionality

atomic component consists of a computation unit with an invocation connector
that provides an interface to the component. A composite component consists of
a set of components (atomic or composite) composed by a composition connector.
The composition connector provides an interface to the composite.

For example, in the bank system (Fig. 2) in Example 1, the atomic component
BB11, a bank branch, may be defined as shown in Fig. 4(a), with an invocation
connector IBB11, and a computation unit with the methods deposit, withdraw,
balance. The composite component B1, a bank, may be defined as shown in

...

Computation

Selector
connector

Atomic
componentbalance(...)

withdraw(...)
deposit(...)

Invocation
connector BB11I

(a) Atomic (Bank branch BB11) (b) Composite (Bank B1)

unit
BB11 BB12

B1

BankBank branch

Fig. 4. Sample atomic and composite components in the bank example

www.manaraa.com

Data Encapsulation in Software Components 5

Fig. 4(b), as a composition of the atomic components BB11 and BB12 using a
selector connector (denoted here by B1 too, for convenience). The bank consor-
tium composite component in Fig. 2 may also be composed (from banks) using a
selector connector, since the consortium has to choose the bank with the branch
to which the customer’s account belongs.

In our model, invocation and composition connectors form a hierarchy [8].
This means that composition is done in a hierarchical manner. Furthermore,
each composition preserves encapsulation. This kind of compositionality is the
distinguishing feature of our component model. An atomic component encap-
sulates computation (Fig. 3(a)), namely the computation encapsulated by its
computation unit. A composite component encapsulates computation and con-
trol (Fig. 3(b)). The computation it encapsulates is that encapsulated in its
sub-components; the control it encapsulates is that encapsulated by its compo-
sition connector. In a composite, the encapsulation in the sub-components is
preserved. Indeed, the hierarchical nature of the connectors means that compos-
ite components are self-similar to their sub-components; this property provides
a basis for hierarchical composition.

In the next section, we will show how to extend our model to include data
encapsulation.

4 Data Encapsulation

Our approach to data encapsulation is illustrated by Fig. 5. Basically, we want
to extend our model (Fig. 3) to allow each component (atomic or composite)
to define place-holders for its own data at design time. These place-holders are
indicated by patterned squares in Fig. 5. Thus, whereas in our current model,
a composite encapsulates computation and control (Fig. 3(b)), in the extended
model, a composite additionally encapsulates data (Fig. 5(b)).

Our extension is centred on the constructor of a component. We want to
be able to make copies of a component at design time, so that they all have
the same types of data place-holders. Copies of a component will also have the
same constructor as the of the original component. At run-time, we want to be
able to create an instance of a component or a copy by using the component’s
constructor, and we want to be able to initialise its data place-holders with

�
�
�
� IF

F

Encapsulation
(computation)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

IGIF

GF

Encapsulation
(computation, control and data)

Compositionality

(a) Atomic component (b) Composite component data

Fig. 5. Data encapsulation

www.manaraa.com

6 K.-K. Lau and F.M. Taweel

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

(a) Bank branch (b) Bank data

BB12BB11

IBB11

BB11

IBB11 IBB12

B1

Fig. 6. Data encapsulation in the bank example

actual data. This way, instances of different copies (atomic or composite) can
encapsulate their own private data.

For the bank example, this is illustrated by Fig. 6. In Fig. 6(a), a branch
component BB11 encapsulates its customers’ data. Using a suitable composition
connector, a bank component can be constructed from branch components BB11
and BB12, where both components are actually copies of the bank branch com-
ponent. As shown in Fig. 6(b), the bank (composite) component encapsulates its
own data which is separate from its sub-components’ data. The encapsulation
of the latter in each branch sub-component is preserved in the bank composite.

The process of instantiating a component (or a copy) often requires initial-
isation of encapsulated data. Such data can either be constants defined in the
component’s design phase; or data created at instantiation time. A component
therefore must have a constructor which enables data initialisation to be per-
formed. In our model, we use data constructors in the component constructor
for this purpose. Data constructors may require to read data from external re-
sources during the data initialisation process. Therefore, connectors must have
data I/O semantics to carry out their tasks. In our model, connectors are capable
of performing data I/O operations.

Initialisation of encapsulated data in the bank example is illustrated in Fig. 7.
A bank branch component must be initialised with the branch name which is
a constant string. It must also read and persist data about the process that
owns the branch component instance. The latter data may include date, process
account and network information, etc. For simplicity, we assume that the com-
ponent only logs its instantiation date. The invocation connector of a branch
component accesses these data values during component construction at run-
time. A bank component composed from two branches also has its own separate
constructor which performs its data initialisation operations. These operations
include, for example, setting the bank name as well as logging a record on the
instantiation date and other system data. As far as data is concerned, the bank
component and its sub-components set their initial data independently, each us-
ing its own constructor. In Fig. 7, bank component B1 reads bank name (B1) and
date (sysdate). Its sub-components perform similar data initialisation operations
when their instances are created. Initialisation performed by each connector of
B1 is indicated by arrows bearing data names.

Data encapsulation is a valuable notion for reuse by copying. A component
that encapsulates its data (in addition to computation and control) and has

www.manaraa.com

Data Encapsulation in Software Components 7

component−name := "B1"date−created := sysdate

component−name :="BB12"
date−created := sysdatedate−created :=

component−name :="BB11"
sysdate

�
�
�
�

�
�
�
�

��
��
��
��

IBB11 IBB12

BB12BB11

B1

Fig. 7. Initialisation of encapsulated data

its own data constructor is a suitable unit for copying. A component in design
phase specifies its local data as place holders. Copying a component creates a new
component that encapsulates its own data (specifications). Data constructors of
copies perform data initialisation of each copy. Therefore, data encapsulation
enables copying of our components.

Furthermore, in a component-based system, it is often desirable to create
multiple instances of a component or to create instances of different copies of a
component. In the bank system, all branches are copies of a branch component.
Instantiating all these branches must be possible. In fact, without each branch
encapsulating its data together with a data constructor, it would be impossible
to have different instances from different copies. In our model, it is even possible
to make many copies of the same component, since instances maintain their own
data.

5 Implementation

In this section we show how we implement data encapsulation in our extended
component model, by using the bank example to show how a bank system can
be constructed from two connectors and one computation unit. First, we outline
our implementation of the extended component model using Oracle Database
10g Enterprise Edition, release 10.1.0.4.0. The choice of a database language is
natural, since we are concerned with data here.

5.1 Connectors and Components

We have implemented our extended component model as a repository that stores
computation units as well as templates for connectors and components (both
atomic and composite), at both design time and run-time. While the reposi-
tory depends on metadata that Oracle maintains on computation units, con-
nectors and component templates are stored as records in database tables, e.g.
CONNECTORS, COMPONENTS, ENC−DATA, ENC−DATA−INST, etc. The
repository provides services such as creating and copying components, searching,
browsing, and component instantiation. Components, connectors and computa-
tional units are coded in the PL/SQL programming language [13]. PL/SQL is
a 4GL programming language that is used by Oracle to specify its programs’
interfaces, so it is the obvious choice for us. However, PL/SQL lacks support

www.manaraa.com

8 K.-K. Lau and F.M. Taweel

PACKAGE BODY "BB" AS

IS BEGIN

RETURN bal;
END balance;

END BB;

FUNCTION withdraw (p_accnt_no CHAR, amnt NUMBER) RETURN CHAR;
...

...

...

PACKAGE "BB" AS

FUNCTION withdraw (p_accnt_no CHAR, amnt NUMBER) RETURN CHAR;
FUNCTION balance (p_accnt_no CHAR) RETURN INTEGER;

FUNCTION deposit (p_accnt_no CHAR, amnt NUMBER) RETURN CHAR;
END BB;

−−− Specification (interface)

−−− Implementation

Fig. 8. PL/SQL specification and implementation of bank branch package

for reflection, which is necessary for implementing our component model. So our
implementation of the repository has to compensate for this.

In our implementation, computation units are Oracle packages and connectors
are Oracle object types. A package is a database construct that groups logically
related PL/SQL types, variables, and subprograms (functions and procedures).
It can implement a computation unit in our component model provided its sub-
programs do not call subprograms in other packages. A package has two parts,
a specification and a body. The specification is the interface to the package. It
publishes the types, variables, constants, exceptions, cursors (record sets) and
subprograms. The body implements cursors and the subprograms. Fig. 8 shows
an example of a PL/SQL package. It is an outline of a package for a bank branch
in the bank example.

An object type is a user-defined composite data type representing a data
structure and subprograms to manipulate the data. It is like an object in an
object-oriented programming language. Like packages, object types are specified
in two parts, a specification (interface) and a body (implementation). Fig. 9
shows an example of an object type. It is an outline of the invocation connector
type, Invoker (see below).

We use object types to implement our connectors hierarchically. The root of
the hierarchy is the supertype CConnector, with three sub-types Invoker, Selec-
tor and Sequencer, for invocation connectors, selector connectors and sequencer
connectors respectively. For example, in Fig. 9, the Invoker type inherits from
CConnector (indicated by the keyword UNDER).

The super-type CConnector provides the implementation of the most impor-
tant procedure for data, the data constructor. This procedure creates and ini-
tialises data instances from data specifications in components. Constructors of
all sub-types of CConnector invoke the data constructor procedure to create and
initialise their components’ data instances. In a sub-type, the constructor starts
by creating and initialising its internal data. Then, it calls the data constructor
procedure which reads its component data specifications from the repository; and
creates and initialises the required data instances. This is illustrated in Fig. 9
for the constructor of Invoker. The call to data constructor is highlighted.

www.manaraa.com

Data Encapsulation in Software Components 9

 self.data_constructor(p_cuname); −− CREATE COMPONENT LOCAL DATA
 END;
END; −−− Invoker.

 CONSTRUCTOR FUNCTION invoker(p_cname VARCHAR2, p_cuname VARCHAR2)
 RETURN SELF AS RESULT,
END; −− Invoker specifications.

CREATE OR REPLACE TYPE "INVOKER" UNDER CCONNECTOR (
−−− Specification (interface)

CREATE OR REPLACE TYPE BODY "INVOKER" IS
 CONSTRUCTOR FUNCTION invoker(p_cname VARCHAR2, p_cuname VARCHAR2)
 RETURN SELF AS RESULT IS
 l_data_value raw(16);
 BEGIN

−−− Implementation

 ... −− other initialization operations.
SELF.cuname := p_cuname;...

Fig. 9. PL/SQL specification of an invocation connector

An atomic component is constructed from a package for a computational unit
and an object type for an invocation connector. The invocation connector keeps a
reference to the computation unit’s name. For example, in Fig. 9, the variable cu-
name is assigned the user-provided computation unit name p cuname. The com-
ponent is created in the repository by executing a procedure which generates a
specification and stores it as records in the relevant repository database tables.
These records contain data on the component, its invocation connector, interface,
services and their return types and parameters, etc. At this point, the compo-
nent is in the design phase. Copying the component is equivalent to retrieving all
the component specification (records) and storing it back under a new component
name. The new name can be a unique user- or system-provided string. The compu-
tation unit must exist in the repository for this operation to complete successfully.

A composite component is constructed from existing components. The proce-
dure concerned takes three parameters: a string name for the new component,
a list containing the sub-components’ names and a connector type. The number
of components that can be composed depends on the semantics of the compo-
sition connector. This procedure generates and stores the specification of the
constructed component in a similar manner to the the procedure for construct-
ing atomic components. In our repository, a composite component is always
constructed from copies of other components. That is, if F and G are compo-
nents in the repository, then in a composite H of F and G, the sub-components
must be copies of F and G, each renamed by the repository. Thus the repository
is implemented in such a way that any composition operation leaves unchanged
the original components involved in the composition process.

5.2 Data Encapsulation

Once a component is constructed and stored in the repository, a set of operations
are available to support the specification of data intended for encapsulation in

www.manaraa.com

10 K.-K. Lau and F.M. Taweel

the component. Data specification for a component include information on the
properties of component’s encapsulated data elements such as their names, types,
state (persistent or transient), initial values, initial actions, etc. The specification
is used by the repository to create and manage data instances at run-time.

At design time, repository operations generate, update and store components’
data specifications in a repository database table named ENC DATA. The oper-
ation to encapsulate a data element in a component takes a parameter (a positive
integer value) for specifying the order for data instantiation. Names for data el-
ements must be unique in the scope of the component that owns them. Data
properties of a data element entry are set using either a generic procedure that is
used to define arbitrary data elements, or a compatible type-specific procedure,
e.g. for integer and string data elements. Copying a component in the repository
results in copying its data specification too. Accordingly, for a component to be
reusable, data initialisation must be delayed to the run-time phase, except when
data is not application specific.

BB111 BB111 BB111 BB112

Instantiation Copying

T11T11
Data definitions
(design phase)

T11 T12T11’’T11’
Data instances
(runtime)

Fig. 10. Encapsulated data in component copies and instances

At run-time, a component constructor is used to create an instance of the
component. This instance is uniquely identified in our run-time system by a CID
(component ID). During the construction process, the data constructor proce-
dure is invoked. It retrieves the component’s data specification stored in the
ENC DATA table; creates and initialises data instances; and stores these in-
stances in a global temporary data space. The initialisation of a data element
can either be achieved by a simple assignment of a constant or a computed
value. Computed values are specified as scripts (anonymous PL/SQL blocks)
and are executed by the run-time system during component construction. Data
instances stored in the data space are made available to their components by
reference. The repository identifies them via their CIDs. The global data space
is implemented as an Oracle global temporary table. Entries in this kind of ta-
bles pertaining to a particular component are automatically garbage collected
when the parent process of the component terminates. Further instantiations
of a component create new, different and independent data instances for each
component instance. Different instances of a component maintain their own data
instances at run-time. Fig. 10 shows encapsulated data in component copies and
instances in the bank example. Branch BB111 owns its data definition T11. A
copy BB112 has its own copy T11 of the data definition. Two instances of BB111

www.manaraa.com

Data Encapsulation in Software Components 11

own two different instances of data: T11’ and T11”. The two instances start with
the same data, but their data becomes different over time.

Component constructors must be capable of performing data I/O operations
required for data initialisation, among others. These operations (read, write) are
implemented as data connectors used to input and output data from various data
sources including the global temporary data space. The repository automatically
creates a data connector for each encapsulated data element, method parame-
ter and return value. For standard data sources such as relational databases, a
complete set of data connectors is available and ready for use. For non-standard
or unknown data sources, data connectors are created as stubs that must be
manually replaced before running the system. Data connectors for non-standard
data sources can be added to the repository and reused in building new systems.
Few of the current component models support relational data sources, and only
.NET supports additionally XML data sources [11].

5.3 The Bank System

Now, we can work out the implementation of a bank system based on the bank
example in Example 1 (Fig. 1) in detail. In particular, we demonstrate data
encapsulation and how our component model enables copying and multiple in-
stantiation of its components. We also show that the composition scheme in our
model preserves and propagates data encapsulation at every level of composition.

Consider a bank system consisting of the 2 consortia BC1 and BC2, as shown
in Fig. 1, with a simplified entity-relationship (ER) diagram as shown in Fig. 11.

Branches has_branch Banks has_banks Consortia has_cons Bank_system

Fig. 11. A simple ER diagram for the bank system

For simplicity, we choose to encapsulate only three data elements in each
component, namely, a component name, date of instantiation and data details.
A bank branch encapsulates separately its name (BRANCH−NAME), date and
customers’ data (CUSTOMERS). A bank component encapsulates data on its
branches (BRANCH) as well as the bank’s name (BANK−NAME) and date.
A consortium holds local data on its member banks (BANK), the name of the
consortium (CONST−NAME) and a date. The bank system holds local data on
all the consortia it has (CONST), its name (BNET) and a date. The date (named
SYS−DATE in each) is a place holder that stores the component’s instantiation
date. The date holds an initialisation script (PL/SQL anonymous block) that
can be executed by the run-time system to return the instantiation date. In Fig.
11, the relationships has-cons, has-banks and has-branch are data encapsulated
in the components bank system, consortia and banks respectively.

To build the system, we start with one computational unit BB (an Ora-
cle package), one invocation connector and one selector composition connector.

www.manaraa.com

12 K.-K. Lau and F.M. Taweel

EXEC REPOSITORY.CREATE_ATOMIC_COMPONENT(’BB111’, ’BB’);

EXEC REPOSITORY.ENCAPSULATE(’BB111’, ’SYS_DATE’, 0);

 (133, NULL, ’BEGIN :A:=ANYDATA.CONVERTDATE(SYSDATE);END;’,NULL);

...
EXEC REPOSITORY.SET_ENC_DATA_PROPERTIES(132, ’VARCHAR2’, ’T’);

EXEC REPOSITORY.ENCAPSULATE(’BB111’, ’BRANCH_NAME’, 0);

EXEC REPOSITORY.SET_ENC_DATA_VALUES

Fig. 12. The construction of atomic component BB111

EXEC REPOSITORY.SET_ENC_DATA_VALUES

L_LIST(1) := ’BB111’;
L_LIST(2) := ’BB111’;
L_REF_CONN := REPOSITORY.CREATE_COMPOSITE_COMPONENT(’B11’, ’SELECTOR’, L_LIST);
.....
EXEC REPOSITORY.ENCAPSULATE(’B11’, ’BANK_NAME’, 0);.....

 (145, NULL, ’BEGIN :A:=ANYDATA.CONVERTDATE(SYSDATE);END;’,NULL);

Fig. 13. The construction of composite component B11

These three elements are sufficient to build the entire bank system outlined
above. Our first component is an atomic component for a bank branch (BB111).
It is constructed from BB and an invocation connector (Fig. 12). In Fig. 12, the
first command creates the component, and the third defines one of its encapsu-
lated data elements, SYS DATE. This variable is stored in the repository with
a unique ID (integer) which is used at run-time in initialising the data element.
The last command assigns SYS DATE a script (’BEGIN...END;’) that returns
the system date when executed. This script is required in every branch compo-
nent, therefore it has been assigned to SYS DATE in the design phase. The rest
of BB111’s encapsulated data is not initialised until the final system has been
constructed.

We assume that the business logic for all bank branches is the same. There-
fore, bank components are constructed from copies of BB111. In Fig. 13 we
construct a bank component B11 using a selector connector to compose two
copies of BB111. The resulting composite component encapsulates its own data.
Its SYS−DATE is also initialised with the same script used for BB111. Data
encapsulated in B11 is independent of its sub-components’ data. Fig. 14 shows
a listing of B11 specification where data encapsulated in its sub-components has
not been influenced by the composition. The composition process has preserved
the sub-components’ encapsulated data and propagated data encapsulation to
the next level.

Similarly, a bank consortium component BC1 can be created in the same way.
We also define its encapsulated data. Finally, we create the bank system com-
ponent (BS) from two copies of BC1 and a definition of its local date. With this
step, the system is complete and it is possible to proceed with data initialisa-
tion. Data initialisation is based on knowledge provided by the repository on
the components’ encapsulated data. Many steps similar to those for initialising
SYS DATE are performed to make BS ready to run.

www.manaraa.com

Data Encapsulation in Software Components 13

−−−

. BRANCH 3 P TABLE

. BRANCH_NAME 1 T VARCHAR2 BB112

. CUSTOMERS 3 P TABLE

. BRANCH_NAME 1 T VARCHAR2 BB111

. CUSTOMERS 3 P TABLE

− BB112 renamed by the repository

− BB111 renamed by the repository

− B11 renamed by the repository

. SYS_DATE 2 T DATE BEGIN :A := ANYDATA.CONVERTDATE(SYSDATE)...

. SYS_DATE 2 T DATE BEGIN :A := ANYDATA.CONVERTDATE(SYSDATE)...

. SYS_DATE 2 T DATE BEGIN :A := ANYDATA.CONVERTDATE(SYSDATE)....

. BANK_NAME 1 T VARCHAR2 B11

.............
SQL> EXEC GET_DATA_SPECS(’BS’); −− Listing of B11 component architecture & its data

 Data Name Q S Type Initial Value

Fig. 14. Data encapsulation in composite component B11

It is clear from the design phase process outlined above, how data encap-
sulation is supported by the composition scheme in our model. Composition
preserves data encapsulation and propagates it. Furthermore, reuse by copying
has been demonstrated in the creation of BS; all branches are copies of BB111,
banks are copies of B11 and consortia are copies of BC1.

At run-time, BS and its sub-components must first be initialised with data,
before BS can be instantiated. After this, creating a BS component results in
creating instances for all its sub-components. Each component constructor cre-
ates its independent data instances and stores them in a data space identified
by a CID. A data trace extracted from the run-time system for two instances of
B11 and B11’ shows different data instances for each component (Fig. 15).

The system can now receive client requests such as withdraw, deposit, balance,
etc. This is illustrated by Fig. 16. By getting its account information via an ATM,
the top-level connector reads the client’s consortium code (BCC) to decide which
consortium to direct control to. The consortium’s top-level connector (BC2)
reads the bank code (BC) to choose the bank. The bank then reads the client
sort code (SC) to determine the client’s bank branch. The bank branch reads the
service requested, account number and amount, processes the client’s request and
returns a report. In this process, each component’s top-level connector performs
the necessary I/O operations it needs to coordinate control flow to the right
bank branch. Fig. 16 shows a client request for (withdraw) to branch BB212.

SYS_DATE 229 29AF4BB598B960ABE0440003BA3A89CB
BRANCH_NAME BB111 230 29AF4BB598BB60ABE0440003BA3A89CB

BRANCH_NAME BB112 231 29AF4BB598BF60ABE0440003BA3A89CB
SYS_DATE 231 29AF4BB598C060ABE0440003BA3A89CB

SYS_DATE 230 29AF4BB598BC60ABE0440003BA3A89CB

BANK_NAME B11 229 29AF4BB598B860ABE0440003BA3A89CB

DATA_NAME COMP. NAME CID References to data in data space

BANK_NAME B11’ 232 29C6EA036AF801A1E0440003BA3A89CB
SYS_DATE 232 29C6EA036AF901A1E0440003BA3A89CB

Fig. 15. Data trace at run-time for two instances of B11

www.manaraa.com

14 K.-K. Lau and F.M. Taweel

BS BB212BC2 B21Components

Data I/O SC

Encapsulated
Data date

banks
date
branches

date
client’s data

Control ends

Control starts

name
date
consortia

name name name

Reportamount

withdraw
BCBCC account no.

Fig. 16. Processing a withdraw request for a BB212 client

6 Discussion and Related Work

In current component models, a component is either an object or an archi-
tectural unit [9,5]. Components that are objects in these models are not com-
positional and so data encapsulation in composites is not meaningful. How-
ever, data encapsulation does occur at the level of atomic components. In com-
ponent models where components are architectural units, composites are de-
fined and can be (new) entities in their own right. Therefore, in these models,
data encapsulation is potentially meaningful for both atomic and composite
components. Of these models, only Koala [15] and PECOS [4] address data
encapsulation.

In Koala, data is specified as attributes and data components. The latter are
modules (non-interface components). Initialisation of attributes is expressed as
either provides interfaces or requires interfaces. In a composition, both kinds of
interfaces must either be exposed via the interface of the composite, or satisfied
internally by a data component. Such a data component is encapsulated inside
the composite, which compromises reuse if the data encapsulated is application
specific. For example, to implement the bank system in Koala, encapsulated
data must be initialised at the composite level, thus breaching information pri-
vacy of customers of each branch. An alternative is to initialise data at the
level of each branch component. However, this compromises reuse. Therefore,
in Koala, composition and reuse are conflicting concerns. Furthermore, copying
and multiple instantiation are not supported because their components are C
modules.

PECOS models data as ports, attributes (properties) and connectors. A port
is a type containing a data type, range and direction. Attributes are constant
data that can be specified for any PECOS component. A connector is a data
type shared between two or more ports. Connections between components in
a composite can not cross the composite’s boundary. A connector between two
composites represents an independent variable which must be synchronised with
data variables held at the connected ports [4].

With respect to data, PECOS components can be classified as controllers
(with their own thread of control) or passive components. The first category in-
cludes active and event components. Composites in PECOS are hierarchical. In a
composite, the root must be a controller component. A controller holds data and
shares it with all the passive components it controls (its sub-components). This

www.manaraa.com

Data Encapsulation in Software Components 15

leads us to conclude that the general notion of data encapsulation is achieved
only at the level of composite components. Components’ ports are points for
passing, but not holding, data. Because of the need for data synchronisation
among components, data initialisation in PECOS is not recommended to be per-
formed in constructors, but rather in a special method provided by the model.
Copying is not possible in PECOS, but multiple instantiation is possible because
a component defines its encapsulated data and has its own data constructor
method to create its data instances.

In contrast to these models, our model provides a constructor which is the only
method needed for instantiating the component and its data. Data initialisation
occurs at the level of each component’s top-level connector, and not recursively,
as in Koala. Copying and multiple instantiation is supported because of our
approach to data in the model.

Our notion of data encapsulation is defined at the level of component models,
not at the level of programming languages. In particular, it should not be con-
fused with encapsulation in object-oriented languages, where objects can encap-
sulate private data. Our notion of data encapsulation comes with composition,
whereas data encapsulation in objects does not. No object-oriented language
provides a single programmatic operator for composition that preserves data
encapsulation in the way that our composition connectors do.

Furthermore, our notion of data encapsulation with composition leads to more
reuse, via copies and instances. In the bank example, we only need one atomic
component and one connector to build the whole system. This kind of increased
reusability is not found in other component models. For instance, in Koala, copies
and instances are not possible, and in PECOS, copies are not possible.

Finally, in [7] we defined data encapsulation in a different way. We defined
it as a way to handle data operations separately from all other operations in
component-based systems. This is unrelated to our definition here. Previously,
separating dataflow and control flow was our focus. In that context, our goal was
achieved by storing data in a global space, but only at the expense of encapsu-
lation. In the present work, we have achieved separation and encapsulation at
the same time.

7 Conclusion

In this work, we have encapsulated data in components. Our goals have been
achieved by extending the semantics of the composition connectors and, ac-
cordingly, the composition scheme, in the component model we proposed in
[6]. As a result, data encapsulation has not only become an invariant property
of the scheme but it is also propagated in composition to newly constructed
components (components are self-similar). Furthermore, data encapsulation has
enabled component copying at design time, and multiple instantiation at run-
time. Data encapsulation and reuse are not conflicting concerns in our model, in
contrast to other models. Therefore, our model provides truly reusable software
building blocks.

www.manaraa.com

16 K.-K. Lau and F.M. Taweel

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.
Addison-Wesley, Reading (2003)

2. Clements, P.C.: A survey of architecture description languages. In: 8th Int. Work-
shop on Software Specification and Design, pp. 16–25. ACM Press, New York
(1996)

3. DeMichiel, L., Keith, M.: Enterprise JavaBeans, Version 3.0. Sun Microsystems
(2006)

4. Genssler, T., Christoph, A., Schulz, B., Winter, M., Stich, C.M., Zeidler, C.,
Müller, P., Stelter, A., Nierstrasz, O., Ducasse, S., Arévalo, G., Wuyts, R., Liang,
P., Schönhage, B., van den Born, R.: PECOS in a Nutshell (September 2002),
http://www.pecos-project.org/

5. Lau, K.-K.: Software component models. In: Proc. ICSE06, pp. 1081–1082. ACM
Press, New York (2006)

6. Lau, K.-K., Ornaghi, M., Wang, Z.: A software component model and its prelimi-
nary formalisation. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2005. LNCS, vol. 4111, pp. 1–21. Springer, Heidelberg (2006)

7. Lau, K.-K., Taweel, F.: Towards encapsulating data in component-based software
systems. In: Gorton, I., Heineman, G.T., Crnkovic, I., Schmidt, H.W., Stafford,
J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 376–
384. Springer, Heidelberg (2006)

8. Lau, K.-K., Velasco Elizondo, P., Wang, Z.: Exogenous connectors for software com-
ponents. In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyper-
ski, C.A., Wallnau, K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 90–106. Springer,
Heidelberg (2005)

9. Lau, K.-K., Wang, Z.: A survey of software component models. 2nd edn., Pre-print
CSPP-38, School of Computer Science, The University of Manchester (May 2006),
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf

10. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Transactions on Software Engineer-
ing 26(1), 70–93 (2000)

11. Microsoft. Data access development overview: within the Microsoft
Enterprise Development Platform. Microsoft Enterprise Development
Strategy Series. Microsoft (March 2005), http://msdn.microsoft.com/
netframework/technologyinfo/entstrategy/default.as px

12. Monson-Haefel, R.: Enterprise JavaBeans 3.0, 5th edn. O’Reilly & Associates
(2006)

13. Russell, J.: PL/SQL User’s Guide and Reference, 10g Release 1 (10.1). Oracle
(2003)

14. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice-Hall, Englewood Cliffs (1996)

15. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala compo-
nent model for consumer electronics software. IEEE Computer 33(3), 78–85 (2000)

http://www.pecos-project.org/
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf
http://msdn.microsoft.com/netframework/technologyinfo/entstrategy/default.as px
http://msdn.microsoft.com/netframework/technologyinfo/entstrategy/default.as px

www.manaraa.com

Binary Change Set Composition

Tijs van der Storm

Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB

Amsterdam, The Netherlands
storm@cwi.nl

Abstract. Binary component-based software updates that are
lightweight, efficient, safe and generic still remain a challenge. Most ex-
isting deployment systems that achieve this goal have to control the com-
plete software environment of the user which is a barrier to adoption for
both software consumers and producers. Binary change set composition is
a technique to deliver incremental, binary updates for component-based
software systems in an efficient and non-intrusive way. This way applica-
tion updates can be delivered more frequently, with minimal additional
overhead for users and without sacrificing the benefits of component-
based software development.

Keywords: deployment, update management, component-based soft-
ware engineering, software configuration management.

1 Introduction

An important goal in software engineering is to deliver quality to users frequently
and efficiently. Allowing users of your software to easily take advantage of new
functionality or quality improvements can be a serious competitive advantage.
This insight seems to be widely accepted [9]. Software vendors are enhancing
their software products with an automatic update feature to allow customers to
upgrade their installation with a single push of a button. This prevents customers
from having to engage in the error-prone and time consuming task of deploying
new versions of a software product. However, such functionality is often propri-
etary and specific to a certain vendor or product, thereby limiting understanding
and broader adoption of this important part of the software process.

The aim of this paper is to maximize the agility of software delivery with-
out sacrificing the requirement that applications are developed as part of a
component-based product line. While it may not be beneficial to force the user
environment to be component-based, it certainly can be for the development
environment. One would like to develop software in a component-based fashion,
and at the same time allow users to transparently deploy an application as a
whole.

If certain actions are tedious, error-prone or just too expensive, they tend to
be performed less frequently. If the effort to package a software product in such
a way that it is ready for deployment is too high, releases will be put out less

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 17–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

18 T. van der Storm

frequently. Similarly, if deploying a new release is a time consuming activity with
a high risk of failure, the user probably will not upgrade every day. Therefore,
if we want to optimize software delivery this can be achieved by, on the one
hand, reducing the cost of release, and on the other hand, by reducing the cost
of deployment.

How would one optimize both release and deployment in a platform and pro-
gramming language independent way, when many products composed of mul-
tiple shared components have to be released and deployed efficiently? In this
paper I present a technique, called binary change set composition, which pro-
vides an answer to this question. Using this technique, applications are updated
by transferring binary change sets (patches). These change sets are computed
from the compositional structure of application releases. It can be used to imple-
ment lightweight incremental application upgrade in a fully generic and platform
independent way. The resulting binary upgrades are incremental, making the up-
grade process highly efficient.

Contributions. The contributions of this paper are summarized as follows:

1. A formal analysis of automatic component-based release and delivery.
2. The design of a lightweight, efficient, safe and platform independent method

for application upgrade.
3. The implementation of this method on top of Subversion.

Organization. This paper is organized as follows. Section 2 provides some back-
ground to the problem of application upgrade by identifying the requirements
and discussing related work. Section 3 forms the technical heart of this paper. I
describe how to automatically produce releases and deliver updates in an incre-
mental fashion. The implementation of the resulting concepts is then discussed
in Section 4. Then, in Section 5, I evaluate the approach by setting it out against
the requirements identified in Section 2. Finally, I present a conclusion and list
opportunities for future work.

2 Background

2.1 Requirements for Application Upgrade

Application upgrade consists of replacing a piece of software that has previously
been installed by a user. The aim of an upgrade for the user is to be able to
take advantage of repaired defects, increased quality or new functionality. The
business motivation for this is that customer satisfaction is increased. To achieve
this goal, the primary requirement is that upgrades succeed. Nevertheless, there
are additional requirements for application upgrade. In the paragraphs below I
discuss four requirements: lightweightness, efficiency, genericity and safety.

For an software deployment method to be lightweight, means that (future)
users of a software product should not be required to change their environment to
accomodate the method of deployment of the product. Reasoning along the same

www.manaraa.com

Binary Change Set Composition 19

lines, the method of creating deployable release should not force a development
organization to completely change their development processes. Furthermore,
the effort to create a release on the one hand, and the effort to apply an upgrade
on the other hand, should require minimum effort.

Efficiency is the second requirement. If the aim is to optimize software delivery,
both release and upgrade should be implemented efficiently. If deploying an
upgrade takes too much time or consumes too much bandwidth, users will tend
to postpone the possibly crucial update. Again, also the development side gains
by efficiency: the storage requirements for maintaining releases may soon become
unwieldy, if they are put out frequently.

To ease the adoption of a release and deployment method, it should not be
constrained by choice of programming language, operating system or any other
platform dependency. In other words, the third requirements is genericity. It
mostly serves the development side, but obviously has consequences for users: if
they are on the wrong platform they cannot deploy the application they might
desire.

The final and fourth requirement serves primarily users: safety of upgrades.
Deployment is hard. If it should occur that an upgrade fails, the user must be
able to undo the consequences quickly and safely. Or at least the consequences
of failure should be local.

2.2 Related Work

Related work exists in two areas: update management and release management,—
both areas belong to the wide ranging field of software deployment. In this field,
update management has a more user oriented perspective and concerns itself with
the question how new releases are correctly and efficiently consumed by users.
Release management, on the other hand, takes a more development-oriented
viewpoint. It addresses the question of how to prepare software that is to be
delivered to the user.

In the following I will discuss how existing update and release tools for
component-based software deployment live up to the requirements identified in
Section 2.1.

Research on software deployment has mostly focused on combining both the
user and development perspectives. One example is the Software Dock [10], which
is a distributed architecture that supports the full software deployment life cycle.
Field docks provide an interface to the user’s site. These docks connect to re-
lease docks at producer sites using a wide area event service. While the software
dock can be used to deploy any kind of software system, and thus satisfies the
genericity requirement, the description of each release in the Deployable Soft-
ware Description (DSD) language presents significant overhead. Moreover, the
Software Dock is particularly good at deploying components from different, pos-
sibly distributed origins, which is outside the scope of this paper. The same can
be said of the Software Release Manager (SRM) [17].

Deployment tools that primarily address the user perspective fall in the cate-
gory of software product updaters [11]. This category can be further

www.manaraa.com

20 T. van der Storm

subdivided into monolithic product updaters and component-based product up-
daters. Whereas product updaters in general do not make assumptions on the
structure of the software product they are updating, component (or package)
deployment tools are explicitly component-based.

JPloy [12] is a tool that gives users more control over which components are
deployed. The question is, however, whether users are actually interested in how
applications are composed. In that sense, JPloy may not be a good match for
application deployment in the strict sense.

Package deployment tools can be further categorized as based on source pack-
ages or binary packages. A typical example of source-based package deployment
tools is the FreeBSD ports system [13]. Such systems require users to down-
load source archives that are subsequently built on the user’s machine. Source
tree composition [5] is another approach that works by composing component
source distributions into a so-called bundle. The tool performing this task, called
AutoBundle, constructs a composite build interface that allows users to trans-
parently build the composition. Source-based deployment, however, is relatively
time-consuming and thus fails to satisfy the efficiency requirement.

Binary package deployment tools do, however, satisfy the efficiency require-
ment. They include Debian’s Advanced Package Tool (APT) [14], the Redhat
Package Manager (RPM) [3], and more recently AutoPackage [2]. These tools
download binary packages that are precompiled for the user’s platform. Both
APT and RPM are tied to specific Linux distributions (Debian/Ubuntu and
Redhat/SuSe respectively) whereas autopackage can be used across distribu-
tions. Nevertheless AutoPackage only works under Linux. Although these de-
ployment tools are independent of programming language, they are not generic
with respect to the operating system.

The deployment system Nix [6] supports both source and binary deployment
of packages in such a way that it is transparent to the user. If no binary package is
found it falls back to source deployment. It features a store for non-destructively
installing packages that are identified by unique hashes. This allows side-by-side
installation of different versions of the same package. Nix is the only deploy-
ment tool that is completely safe because its non-destructive deployment model
guarantees that existing dependencies are never broken because of an update.
Furthermore, it is portable across different flavors of Unix and does not require
root access (which is the case for all package deployment tools except AutoPack-
age).

One problem in general with package deployment tools is that they are invasive
with respect to the environment of the user. For instance, the value of these tools
is maximum when all software is managed by it. This explains why most such
tools are so intertwined with operating system distributions, but it is a clear
violation of the lightweightness requirement.

While some systems, such as Nix, AutoPackage and JPloy, can be used next
to the ‘native’ deployment system, they still have to be able to manage all
dependencies in addition to the component that the user actually wants to install.
In the worst case this means that a complete dependency tree of packages is

www.manaraa.com

Binary Change Set Composition 21

duplicated, because the user deployed her application with a deployment tool
different from the standard one. Note that this is actually unavoidable if the
user has no root access. Note also that the user is at least required to install the
deployment system itself, which in turn may not be an easy task.

2.3 Overview of the Approach

The motivations for component-based development are manyfold and well-
known. Factoring the functionality of an application in separate components,
creates opportunities for reuse,—both within a single product or across multi-
ple products [15]. A distinguising feature of component-based development is
the fact that components have their own life-cylce, both within a product and
across products. This means that components are evolved, released, acquired
and deployed independently, by different parties and at different moments in
time.

In this paper components are interpreted as groupings of files that can be ver-
sioned as a whole. Components, however, often are not stand-alone applications.
This means that a component may require the presence of other components to
function correctly. Such dependencies may be bound either at build-time or at
runtime. Applications are then derived by binding these dependencies to imple-
mentation components, either at build-time, load-time or even runtime.

In the following I assume a very liberal notion of dependency, and conse-
quently of composition. When one component requires another component it is
left unspecified what the concrete relation between the two components amounts
to. Abstract dependencies thus cover both build-time and runtime dependencies.
Under this interpretation, composition is loosely defined as merging all files of
all related components into a single directory or archive.

When a component has been built, some of the resulting object files will con-
tribute to the composed application. This set of files is called the (component)
distribution. To distribute an application to users, the relevant component dis-
tributions are composed before release, resulting in a single application distribu-
tion. Thus, an application is identified with a certain root node in the component
dependency graph and its distribution consists of the transitive-reflexive closure
of the dependencies below the root.

In the next section I will present a technique to efficiently create and deliver
such application releases, called binary change set composition. We will see that
continuous integration of component-based software extends naturally to a pro-
cess of automatic continuous release. A component will only be built if it has
changed or if one of its dependencies has changed. If a component has been built
it is released automatically. The results of a build are stored persistently so that
components higher up in the dependency graph may reuse previous builds from
components lower in the dependency graph.

Apart from the files belonging to a single component, the composition of these
sets of files is also stored. The space requirements for this can quickly become
unwieldy, therefore these application distributions are stored differentially. Dif-
ferential storage works by saving the changes between files. Instead of composing

www.manaraa.com

22 T. van der Storm

sets of files, one can now compose sets of change sets. In addition to storing many
releases efficiently, binary change set composition yields an efficient way of up-
dating user installations.

3 Binary Change Set Composition

3.1 Incremental Integration

Tools like make optimize software builds because it only updates targets when
they are out of date. It is possible to lift this paradigm from the level of files
to the level of components. Hence, a component is only built if it is out of
date with respect to some saved state, or when one of its dependencies is out
of date. If built artifacts are stored persistently they can be reused. Sharing
of builds is particularly valuable when a software product is continuously in-
tegrated [8]. Traditionally continuous integration is defined as a process where
developers continuously integrate small changes to main development branch in
the source control system. Then, after every change, the complete application is
automatically built from scratch and automated tests are run. A naive apporach
to building large systems from scratch, however, may not scale.

Consider an example that derives from three real-world components, tool-
bus , toolbuslib and aterm. The Toolbus is a middleware component that allows
components (“tools”) to communicate using a centralized software bus. Tools im-
plemented in C use the toolbuslib component for this. Using the Toolbus, tools
exchange data in a tree-like exchange format called Annotated Terms (ATerms)
this datastructure is implemented by the aterm component. Obviously, toolbus
requires both the connection and the exchange format libraries, whereas the
connection library only requires the exchange format. All three components are
used with the Asf+Sdf Meta-Environment, a component-based application for
language development [16].

Figure 1 shows four build iterations. The dashed boxes indicate changes in that
particular component. In the first iteration every component has been built. At
the time of the second iteration, however, only the top-level toolbus component
has changed, so it is built again but this time reusing the previous builds of
toolbuslib and aterm. Similarly, in the third iteration there has been a change
in the toolbuslib component. Since toolbus depends on toolbuslib a new build is

toolbuslib

toolbus toolbus toolbus

toolbuslib

toolbus

aterm

toolbuslib

aterm

0 1 2 3

Fig. 1. Incremental integration

www.manaraa.com

Binary Change Set Composition 23

triggered for both toolbuslib and toolbus . Finally, in the last iteration changes
have been committed to the aterm component and as a result all components
are rebuilt.

An implementation of incremental continuous integration, called Sisyphus,
has been described in [18]. This system works as follows. Every time a commit
to the source control system occurs, Sisyphus checks out all components. It does
this by starting with a root component, and reading a special file contained in
the source tree that describes the dependencies of this component. This process
is repeated for each of the dependencies. Meanwhile, if the current version of a
component has not been built before, or one of its dependencies has been built
in the current iteration, a build is triggered. Results are stored in a database
that serves as saved state.

3.2 Build and Release Model

The build and release model presented in this section can be seen as the data
model of a database for tracing change, build and release processes. Additional
details can be found in [18]. The state of a component at a certain moment in
time is identified with its version obtained from the source control system. Each
version may have been built multiple times. The model records for every build
of a component version which builds were used as dependencies. A set of built
artifacts is associated to each build. Finally, a release is simply the labeling of a
certain build; the set of releases is a subset of the set of builds.

In the context of this paper two sets are important: Build, the set that repre-
sents component builds, and Use defined as a binary relation between builds (i.e.
Use ⊆ Build × Build). This dependency relation derives from explicitly speci-
fied requires interface within the source tree of each component. At build-time
the required components are bound the source trees of those components, at
that moment in time. Thus, the integration process takes the latest revision of
each component. Building a component then results in a set of built artifacts
(libraries, executables etc), given by the function files(aBuild).

The extent of a build is defined as the set of builds that have participated
in a build. It is computed by taking right image of a build b in the transitive-
reflexive closure of the Use relation: extent(b) = Use∗[b]. The extent of a build
thus contains all builds that will make up an application release. The set of files
that will be part of a release is derived from the set of files that each component
in the extent contributes. This is discussed in the next section.

3.3 Prefix Composition

When a component has been built some of the resulting object files will con-
tribute to the composed application. The set of files that is distributed to the
user is called the application distribution, and it is composed of component
distributions.

Figure 2 shows how the files contributed by each component to the toolbus
application are taken together to form a single application distribution. On the

www.manaraa.com

24 T. van der Storm

lib

bin

include

lib

libtoolbus.a

libATerm.so

bin

toolbus

atdiff

include

toolbus.h

aterm.h

toolbus

bin

toolbus
toolbuslib

lib

include

aterm

libtoolbus.a

toolbus.h

libATerm.so

atdiff

aterm.h

Fig. 2. Prefix composition

left is shown that all installable files of each component first end up in a compo-
nent specific directory,—in the example this could have been the result of issuing
make install. To release the toolbus as an application, these sets of files and di-
rectories are merged, resulting in a single application distribution, as shown on
the right.

I call this way of composing components “installation prefix composition”
since the component directories on the left correspond to directory prefixes
passed to ./configure using the command line option --prefix. Such configura-
tion scripts are generated by AutoConf [1], a tool to configure build processes
that is widely used in open source projects. Among other things, it instructs
make install to install files to a Unix directory hierarchy below the prefix. Prefix
composition thus constitutes merging directories containing built artifacts.

Since components are composed by merging sets of files and directories we
must ensure that no component overwrites files of another component. Formally,
this reads:

∀b ∈ Builds :
⋂

b′∈extent(b)

files(b′) = ∅

In other words, this ensures that making a distribution is compositional. Instead
of explicitly creating a global application distribution one can compose indi-
vidual component distributions to achieve the same effect. What the property
effectively states is that building a component, viewed as a function, distributes
over composition.

There is one technicality which has to be taken care of: the distributed files
should be relocatable. Because builds happen at the developer’s site one must
ensure that no (implicit) dependencies on the build environment are bound at
build time. For instance, if a Unix executable is linked to a dynamic library that
happens to be present at build time, then this library should also be present
on the user’s machine,—even on the same location. Since we do not want to
require that users should reproduce the complete build environment, care must
be taken to avoid such “imported” dependencies. I elaborate on this problem in
Section 4.3.

www.manaraa.com

Binary Change Set Composition 25

3.4 Change Set Delivery

If the compositionality property holds the composition is defined by collecting
all files that are in the extent of a build:

files∗(b) =
⋃

b′∈extent(b)

files(b′)

The function files∗ computes the set of files that eventually has to be distributed
to users. An update tool could transfer these files for every build that is released
to the users of the application. If a user already has installed a certain release,
the tool could just transfer the difference between the installed release and the
new release. Let F1,2 = files∗(b1,2). Then, the change set between two releases
b1 and b2 is defined as:

{Δ(F1 ∩ F2), +(F2\F1), −(F1\F2)}
Change sets have three parts. The first part, indicated by Δ contains binary
patches to update files that are in both releases. The second and third part add
and remove the files that are absent in the first or second release respectively.

Table 1. Change set delivery

Upgrade Change set delivered to user

0 → 1 {Δ0
1bin/toolbus}

1 → 2 {Δ1
2bin/toolbus, Δ0

2lib/libtoolbus.a}
2 → 3 {−bin/atdiff}

If we turn our attention once again to Figure 2, we see on the right the
composed prefix for the toolbus application. Let’s assume that this is the initial
release that a typical user has installed. In the meantime, development continues
and the system goes through three more release cycles, as displayed in Figure 1.
The sequence of change sets transferred to our user, assuming she upgrades to
every release, is listed in Table 1.

The second iteration only contains changes to the toolbus component itself.
Since the only installable file in this component is bin/toolbus , a patch is sent
over updating this file at the user’s site. In the next iteration there is a change
in toolbuslib and as a consequence toolbus has been rebuilt. Updating to this
release involves transferring patches for both bin/toolbus and lib/libtoolbus.a.
There must have been a change in the bin/toolbus since libtoolbus.a is statically
linked. In the final iteration the changes were in the aterm component. However,
this time neither toolbuslib nor toolbus are affected by it—even though they have
been rebuilt—because the change involved the removal of a target: the bin/atdiff
program appears to be no longer needed. Neither toolbus , nor toolbuslib refer-
enced this executable, hence there was no change in any of the built files with
respect to the previous release. As a result, the change set only contains the
delete action for bin/atdiff . Note that these change sets can be easily reverted
in order to support downgrades.

www.manaraa.com

26 T. van der Storm

〈1, toolbus〉:
{Δ0

1bin/toolbus}

���
�
�

��

�

�

�
�

�

�

〈2, toolbus〉:
{Δ1

2bin/toolbus}

���
�
�
�
�
�
�
�
�
�
�
�

���
�
�

〈3, toolbus〉:{}

��

	

�
�

�

�

�

���
�
�
�

〈0, toolbuslib〉:
{+lib/libtoolbus.a,
+include/toolbus.h}

��

〈2, toolbuslib〉:
{Δ0

2lib/libtoolbus.a}

����
��

��
��

��
��

�

〈3, toolbuslib〉:{}

���
�
�
�
�

〈0, aterm〉:
{+bin/atdiff,
+lib/libATerm.so,
+include/aterm.h}

〈3, aterm〉:
{−bin/atdiff}

Fig. 3. Change set composition

3.5 Change Set Composition

Until now we have assumed that every application release was completely avail-
able and the change sets were only used to optimize the update process. From
the use of change sets to update user installations, naturally follows the use of
change sets for storing releases. Figure 3 shows how this can be accomplished.

Once again, the three integration iterations are shown. In the first iteration,
only the toolbus had changed and had to be rebuilt. This resulted in an updated
file bin/toolbus . The figure shows that we only have to store the difference be-
tween the updated file and the file of the previous iteration. Note that initial
builds of aterm and toolbuslib (from iteration 0) are stored as change sets that
just add files.

The second iteration involves a change in toolbuslib; again, patches for toolbus
and toolbuslib are stored. However, in the third iteration, the change in the aterm
component did not affect any files in toolbus or toolbuslib, so no change sets need
to be stored for these components. But if users should be able to update their
installation of the toolbus application, still the toolbus should be released. So
there really are four toolbus releases in total, but the last one only contains
changes originating from aterm.

I will now describe how this scheme of binary change set composition can be
implemented on top of Subversion.

4 Implementation Using Subversion

4.1 Composition by Shallow Copying

Subversion [4] is a source control system that is gaining popularity over the
widely used Concurrent Version System (CVS). Subversion adds many features
that were missing in CVS, such as versioning of directories and a unified approach

www.manaraa.com

Binary Change Set Composition 27

+bin/atdiff

+lib/libATerm.so

+include/aterm.h

3
lib

libATerm.so
include

aterm.h

3

0 ...

...

bin

atdiff
lib

libATerm.so
libtoolbus.a

include

aterm.h
toolbus.h

libATerm.so
libtoolbus.a

include

aterm.h
toolbus.h

lib

latest

−bin/atdiff
component

aterm toolbuslib
latest

0

lib

libATerm.so

bin

atdiff

include

aterm.h

+lib/libtoolbus.a

+include/toolbus.h

lib/libtoolbus.a

composition

component ...
0

2

3 ...

...

...

composition
0

2

3

...

Fig. 4. Composition by shallow copying

to branching and tagging. Precisely these features prove to be crucial in the
implementation of binary change set composition on top of Subversion.

Next, I will describe how Subversion repositories can be used as release reposi-
tories that allow the incremental delivery of updates to users. The release process
consists of committing the component distributions to a Subversion repository,
and then use branching to identify component releases. Such component-release
branches are the unit of composition, which is also implemented by branching.

The crucial feature of Subversion that makes this work efficiently, is that
branching is implemented by shallow copying. So, for instance a branch is created
for some repository location—file or directory—by copying the tree to another
location. At the new location, Subversion records a reference to the source of the
copy operation. The copy operation is a constant-space operation and therefore
a very efficient way to implement sharing.

Figure 4 shows a snapshot of a Subversion repository containing aterm and
toolbuslib releases based on the change set graph displayed in Figure 3. For
the sake of presentation releases of the toolbus have been omitted. On the left
we see the Subversion tree for aterm, and on the left the tree for toolbuslib.
The trees have subtrees indicated latest , component and composition. The latest
tree is where component distributions are stored. The rounded boxes contain the
change sets from Figure 3. The component tree and the composition tree contain
shallow copies of versions of the latest tree; these are the releases proper. Solid
arrows indicate copy relations the context of a single component,—dotted arrows
indicate cross component copying (i.e. composition relations).

After every build the changes in the distributions are commited to the latest
tree. The state of the latest tree at that time is then copied to a branch identifying
this particular build; such branches are created by copying the files from latest

www.manaraa.com

28 T. van der Storm

to a separate directory under component . Note that since the change set for
toolbuslib in iteration 3 was empty, toolbuslib release 3 is created from the state
of the latest tree at iteration 2.

The tree below composition contains releases for compositions. This works by,
instead of just copying the files belonging to a single build, copying the files in the
extent of the build. In the example, this means that, next to the files contained
in toolbuslib releases also the files in aterm releases are copied. If we compare
toolbuslib composition 0 and 3, one can see in the figure that composition 0
is composed with release 0 of aterm, whereas composition 3 is composed with
release 3 of aterm, exactly as in Figure 3.

4.2 Upgrade Is Workspace Switch

Assuming the proper access rights are in place, the Subversion repository can be
made publicly accessible for users. A user can now check out the desired subtree
of compositions ; this can easily be performed by a bootstrap script if it is the
initial installation. She then obtains the composed prefix of the application.

Now that the user has installed the application by checking out a repository
location, it is equally easy to down- or upgrade to a different version. Since
the subtrees of the composition tree contain all subsequent releases of the ap-
plication, and the user has checked out one of them, up- and downgrading is
achieved by updating the user’s local copy of the composed prefix to another re-
lease branch. Subversion provides the command svn switch for this. Subversion
will take care of adding, removing or patching where necessary.

Note that the sharing achieved in the repository also has an effect on how
local checkouts are updated. For instance, recall that the third release of toolbus
in the example involved the removal of bin/atdiff . If we assume that the user
has installed the second release, and decides to upgrade, the only action that
takes place at the user site is the removal of bin/atdiff , since the third release
of both toolbus and toolbuslib contain the same change sets as second release of
both these components.

4.3 Techniques for Relocatability

Installed application releases are ready to use with the exception of one tech-
nicality that was mentioned before, which is: relocation. Since the released files
may contain references to locations on the build server at the side of develop-
ment, these references become stale as soon as the users installed them. We
therefore require that applications distributed this way should be binary relo-
catable. There are a number of ways to ensure that distributions are relocatable.
Some of these are briefly discussed below.

There are ways to discover dynamically what the locations are of libraries
and/or executables that are required at runtime. For instance, AutoPackage [2]
provides a (Linux-only) library that can be queried at runtime to obtain ‘your’ lo-
cation at runtime. Since the files contributed by each component are

www.manaraa.com

Binary Change Set Composition 29

composed into a single directory hierarchy, dependencies can be found relative
to the obtained location.

Another approach is to use wrapper scripts. As part of the deployment of an
application a script could be generated that invokes the deployed application.
This script would then set appropriate environment variables (e.g. PATH or
LD LIBRARY PATH on Unix) or pass the location of the composed prefix on
the commandline.

Finally, we could use string rewriting to effectively relocate unrelocatable
files just after deployment. This amounts to replacing build time paths with
their runtime counter-parts in every file. Special care must be taken in the case
of binary files, since it is very easy to destroy their integrity. This technique,
however, has been applied successfully.

5 Evaluation

5.1 Experimental Validation

A prototype implementation has been developed as part of the Sisyphus inte-
gration framework [19]. It has been used to deliver updates for a semi-large
component-based system, consisting of around 30 components: the Asf+Sdf

Meta-Environment [16]. All built artifacts were put under Subversion, as de-
scribed in the previous section. As expected, the repository did not grow ex-
ponentially, although all 40 component compositions were stored multiple
times.

The Asf+Sdf Meta-Environment is released and delivered using source tree
composition [5]. This entails that every component has an abstract build in-
terface based on AutConf. The prefixes passed using --prefix during build are
known at the time of deployment so could be substituted quite safely. In order
to keep binary files consistent, the prefixes passed to the build interface were
supplanted with superfluous ‘/’ characters to ensure enough space for the sub-
tituted (user) path. This trick has not posed any problem as of yet, probably
because package-based development requires that every dependency is always
passed explicitly to the AutoConf generated ./configure script.

A small Ruby script served as update tool. It queries the repository, listing all
available releases. If you select one, the tree is checked out to a certain directory.
After relocation the Meta-Environment is ready to use. Before any upgrade or
downgrade however, the tool undoes the relocation to prevent Subversion from
seeing them as “local modifications”.

5.2 Release Management Requirements

The subject of lightweight application upgrade belongs to the field of software re-
lease management. In [17], the authors list a number of requirements for effective
release management in the context of component-based software. I discuss each
of them briefly here and show that our approach satisfies them appropriately.

www.manaraa.com

30 T. van der Storm

Dependencies should be explicit and easily recorded. Incremental contin-
uous integration of components presumes that dependencies are declared as
meta data within the source tree of the component. Thus, this requirement is
satisfied.

Releases should be kept consistent. This requirement entails that releases
are immutable. The incremental continuous integration approach discussed
in this paper guarantees this.

The scope of the release should be controllable. Scope determines who is
allowed to obtain a software release. The release repository presented in this
paper enables the use of any access control mechanism that is provided by
Subversion.

A history of retrievals should be kept. Although I do not address this re-
quirement directly, if the Subversion release repository is served over HTTP
using Apache, it is easily implemented by consulting Apache’s access logs.

With respect to release management the implementation of change set compo-
sition using Subversion has one apparent weakness. Since Subversion does not
allow cross-repository branching it would be hard to compose application releases
using third-party components. However, this can be circumvented by using the
Subversion dump utility that exports sections of a repository on file. Such a file
can then be transferred to a different repository.

5.3 Update Management Requirements

In Section 1 I listed the requirements for application upgrade from the user
perspective. Let’s discuss each of them in turn to evaluate whether application
upgrade using Subversion satsifies them.

Lightweightness. No invasive software deployment tool has to be installed to
receive updates: only a Subversion client is required. Since, many language
bindings exist for Subversion, self-updating functionality can be easily inte-
grated within the application itself.

Genericity. Change set composition works with files of any kind; there is no
programming language dependency. Moreover, Subversion is portable across
many platforms, thereby imposing no constraints on the development or user
environment.

Safety. The Subversion switch command is used for both upgrade and down-
grade. A failed upgrade can thus be quickly rolled back. Another contribu-
tion to safety is the fact that Subversion repository modifications are atomic,
meaning that the application user is shielded from inconsistent intermediate
states, and that releases put out in parallel do not interfere.

Efficiency. Efficiency is achieved on two accounts. First the use of Subversion
as delivery protocol ensures that an upgrade involves the transfer of just
the differences between the old version and the new version. Secondly, while
the unit of delivery is a full application, only the files per component are
effectively stored, and even these are stored differentially.

www.manaraa.com

Binary Change Set Composition 31

Although all requirements are fulfilled satisfactory, the primary weakness of bi-
nary change set composition remains the fact that distributed files have to be
relocatable. Solving this problem is left as future work.

6 Conclusion and Future Work

In this paper I have discussed the requirements that have to be fulfilled so that
application upgrade is a burden neither for the development side, nor for the
user side. Related work in the area of software release management did not live
up to these requirements. The binary change set composition technique does live
up to these requirements, and can be used to deliver new application releases
accurately, frequently and quickly. The implementation on top of Subversion
shows that the approach is feasible and may serve as a low impact adoption
path.

However, ample opportunities for future work remain. First of all, the relo-
catability requirement of distributed files should be investigated. For instance,
so-called application bundles on Mac OS X are always relocatable and would be
perfect candidates for being updated using the techniques of this paper. Further
research will have to point out if the notion of relocatable application bundles
can be ported to other platforms. On the other had, I would like to investigate
whether it is possible to make the binding of dependencies a first-class citizen in
the model. For instance, one could envision a kind of service where components
register themselves in order for them to be found by other components. This
subject is closely related to the notion of dependency injection [7].

Another direction of future work concerns the integration of deployment func-
tionality with the released application itself. Nowadays, many applications con-
tain functionality to check for new updates. If they are available they are installed
and the application is restarted. It would be interesting if using the approach of
this paper one could design such “update buttons” in a reusable and generic way.
Similarly, it should be investigated how such self-updating applications could be
enhanced with functionality for reporting bugs or other kinds of feedback.

References

1. AutoConf. Online: http://www.gnu.org/software/autoconf
2. AutoPackage. Online: http://www.autopackage.org
3. Bailey, E.C.: Maximum RPM. Taking the Red Hat Package Manager to the Limit.

Red Hat, Inc. (2000), Online: http://www.rpm.org/max-rpm
4. Collins-Sussman, B., Fitzpatrick, B.W., Pilato, C.M.: Version Control with Sub-

version. O’Reilly Media (2004), Online: http://svnbook.red-bean.com/
5. de Jonge, M.: Source tree composition. In: Gacek, C. (ed.) Software Reuse: Meth-

ods, Techniques, and Tools. LNCS, vol. 2319, pp. 17–32. Springer, Heidelberg
(2002)

6. Dolstra, E., de Jonge, M., Visser, E.: Nix: A safe and policy-free system for soft-
ware deployment. In: Damon, L. (ed.) LISA ’04. 18th Large Installation System
Administration Conference, pp. 79–92 (2004)

http://www.gnu.org/software/autoconf
http://www.autopackage.org
http://www.rpm.org/max-rpm
http://svnbook.red-bean.com/

www.manaraa.com

32 T. van der Storm

7. Fowler, M.: Inversion of control containers and the dependency injection pattern
(April 2007), Online: http://martinfowler.com/articles/injection.html

8. Fowler, M., Foemmel, M.: Continuous integration (April 2007), Online:
http://martinfowler.com/articles/continuousIntegration.html

9. Grossman, E.: An update on software updates. ACM Queue (March 2005)
10. Hall, R.S., Heimbigner, D., Wolf, A.L.: A cooperative approach to support soft-

ware deployment using the software dock. In: ICSE’99. Proceedings of the 1999
International Conf. on Software Engineering, pp. 174–183 (1999)

11. Jansen, S., Ballintijn, G., Brinkkemper, S.: A process framework and typology for
software product updaters. In: CSMR 2005. 9th European Conference on Software
Maintenance and Reengineering (2005)

12. Lüer, C., van der Hoek, A.: JPloy: User-centric deployment support in a compo-
nent platform. In: Second International Working Conference on Component De-
ployment, May 2004, pp. 190–204 (2004)

13. FreeBSD Ports. Online: http://www.freebsd.org/ports
14. Silva, G.N.: APT HOWTO. Debian (2004)

Online: http://www.debian.org/doc/manuals/apt-howto/index.en.html
15. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-

Oriented Programming, 2nd edn. ACM Press and Addison-Wesley, New York
(2002)

16. van den Brand, M., Bruntink, M., Economopoulos, G., de Jong, H., Klint, P.,
Kooiker, T., van der Storm, T., Vinju, J.: Using The Meta-environment for Main-
tenance and Renovation. In: CSMR’07. Proceedings of the Conference on Soft-
ware Maintenance and Reengineering, IEEE Computer Society Press, Los Alamitos
(2007)

17. van der Hoek, A., Wolf, A.L.: Software release management for component-based
software. Software—Practice and Experience 33(1), 77–98 (2003)

18. van der Storm, T.: Continuous release and upgrade of component-based software.
In: Whitehead, J., Dahlqvist, A.P. (eds.) SCM-12. Proceedings of the 12th Inter-
national Workshop on Software Configuration Management (2005)

19. van der Storm, T.: The Sisyphus continuous integration system. In: CSMR’07.
Proceedings of the Conference on Software Maintenance and Reengineering, IEEE
Computer Society Press, Los Alamitos (2007)

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/continuousIntegration.html
http://www.freebsd.org/ports
http://www.debian.org/doc/manuals/apt-howto/index.en.html

www.manaraa.com

Automated and Unanticipated Flexible

Component Substitution

Nicolas Desnos1, Marianne Huchard2, Christelle Urtado1, Sylvain Vauttier1,
and Guy Tremblay3

1 LGI2P - Ecole des Mines d’Alès, Nı̂mes, France
2 LIRMM - UMR 5506 - CNRS and Univ. Montpellier 2, Montpellier, France

3 Département informatique, UQAM, Montréal, QC, Canada

{Nicolas.Desnos, Christelle.Urtado, Sylvain.Vauttier}@site-eerie.ema.fr,
huchard@lirmm.fr, tremblay.guy@uqam.ca

Abstract. In this paper, we present an automatic and flexible approach
for software component substitution. When a component is removed from
an assembly, most existing approaches perform component-to-component
substitution, relying on the fact that such a candidate component is avail-
able, which is hardly to happen because the constraints on its interfaces
are too strong. When such a component does not exist, it would be more
flexible to allow a single component to be replaced by a whole component
assembly. We propose such an automatic substitution mechanism which
does not need the changes to be anticipated and preserves the quality of
the assembly.

1 Introduction

Today, software systems are becoming voluminous and complex like never be-
fore. Component-based software engineering [1] is a good solution to optimize
the time and cost of software design while still guaranteeing the quality of the
software. Moreover, the modularity it enables allows to tame the complexity of
large systems. Typically, a component is seen as a black box which provides and
requires services through its interfaces. An architecture is built to fulfill a set of
functional objectives (its functional requirements)1 and is described as a static
interconnection of software component classes. A component assembly is a run-
time instantiation of an architecture composed of linked component instances.

In this paper, we present an automatic and flexible approach for dynamic soft-
ware component substitution. Anticipating component substitution, to overcome
component obsolescence, failure or unavailability, is not always (cognitively) pos-
sible. Repairing a component assembly after a component has been removed
while preserving its whole set of functionalities is difficult. When a component
is removed from an assembly, most existing approaches perform component-to-
component substitution [2,3,4,5]. However, these approaches rely on the fact that

1 Our work does not yet handle non-functional requirements.

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 33–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

34 N. Desnos et al.

such an appropriate component, candidate for substitution, is available. This sit-
uation is hardly to happen because it is difficult to find a component that has
the same capabilities than the removed one.

When such a component does not exist, allowing a single component to be
replaced by a whole component assembly would permit more flexibility. In this
paper, we propose such an automatic substitution mechanism which does not
need the changes to be anticipated. Our approach relies on primitive and com-
posite ports for replacing a component by a whole assembly of components while
preserving the quality of the assembly.

The rest of this paper proceeds as follows. Section 2 introduces component-
based software engineering, presents existing work on component substitution
and shows their limits. Section 3 describes our proposition for dynamically re-
placing a component. We first shortly present how ports allow us to automatically
build valid assemblies [6]. We then show how this process can be used as part of
a flexible component substitution process. We also present how it is possible to
simplify the assembly by removing all the components that have become useless.
Finally, Section 4 concludes and proposes perspectives to this work.

2 Context and Related Work

2.1 Software Architecture Correctness and Completeness in CBSE

Component-Based Software Engineering [7] makes it possible to build large sys-
tems by assembling reusable components. The life cycle of a component-based
architecture can be divided into three phases: design-time, deployment-time and
runtime.

At design-time, the system is analyzed, designed and the validity of the de-
sign is checked. An architecture is built to fulfill a set of functional objectives
(its functional requirements) [8,9]. Functional objectives are defined as a set of
functionalities to be executed on selected components. Selecting the functional
objectives is typically a task performed during the analysis step. The structure of
the architecture is described, during the design step, as a static interconnection
of software component classes through their interfaces. It requires both selecting
and connecting2 the software components to be reused. This description, typ-
ically written in an architecture description language [10], expresses both the
functional and non-functional capabilities of the architecture, as well as both
the structural and the behavioral dependencies between components. Once the
architecture is described, its validity is statically checked. Most systems verify
the correctness of the architecture; some also guarantee its completeness.

Correctness. Verifying the correctness of an architecture amounts to verifying
the connections between components and checking whether they correspond
to a possible collaboration [9]. These verifications use various kinds of meta-
information (types, protocols, assertions, etc.) associated with various structures
2 We assume that the selected components need no adaptation (or have already been

adapted).

www.manaraa.com

Automated and Unanticipated Flexible Component Substitution 35

(interfaces, contracts, ports, etc.). The finest checks are done by protocol com-
parisons, which is a combinatorial problem [11,12,13].

Completeness. The architecture must also guarantee that all its functional ob-
jectives are going to be supported. In other words, the connections of an ar-
chitecture must be sufficient to allow the execution of collaborations that reach
(include) all the functional objectives. We call this completeness of the ar-
chitecture [6]. Indeed, the use of a component functionality (modeled by the
connection of an interface) can necessitate the use of other functionalities which,
in turn, entail new interface connections. Such functionalities (or interfaces) are
said to be dependent. This information is captured in the description of com-
ponent behavior and depends on the context in which the functionality is called
(execution scenario). There are various ways to ensure completeness:

– For a first class of systems [14], completeness of an architecture is guaran-
teed by verifying that all the interfaces of all its components are connected.
This view makes checking completeness very simple but over-constrains the
assembly thus diminishing both the capability of individual components to
be reused in various contexts and the possibilities of building a complete
architecture, given a set of predefined components.

– To overcome the defects of the first class of systems, a second class of sys-
tems [3] defines two categories of interfaces (mandatory and optional). These
systems allow complete architectures to be built while still leaving pending
interfaces (the optional ones). This view does not complicate the checking
of completeness and increases the opportunities of building a complete ar-
chitecture, given a set of predefined components. However, associating the
mandatory/ optional property to an interface regardless of the assembly con-
text does not increase the capability of individual components to be reused
in various contexts.

– The third strategy requires connecting only the interfaces which are strictly
necessary to reach completeness [12,15,16] by exploiting the description of
the component behavior. This is typically done by analyzing protocols which
makes completeness checking less immediate.

Example. Figure 1 illustrates that it is possible to ensure completeness of an
assembly while connecting only the strictly necessary interfaces. The Dialogue
interface from the Client component represents a functional objective and must
therefore be connected. As deducted by analyzing the execution scenario that
has to be supported, all the dependent interfaces (grayed on Figure 1) must also
be connected in order to reach completeness. For example, the Control interface
from the MemberBank component must be connected whereas the Question
interface from the Client component does not need to be connected.

Once the validity of the architecture is checked, it can be deployed (deployment-
time). Deployment requires instantiating the architecture, configuring its physical
execution context and dispatching the components in this physical context. One
of the results of deployment is a component assembly: a set of linked component
instances that conforms to the architectural description.

www.manaraa.com

36 N. Desnos et al.

Fig. 1. A complete assembly and a possible corresponding execution scenario

At runtime, the component assembly executes. The evolution of this assem-
bly is an important issue for the application to adapt to its environment in such
situations, as maintenance, evolution of the requirements, fault-tolerance, com-
ponent unavailability in mobile applications, etc. In this context, an important
question is: What are the possible dynamic evolutions that can be supported by
the component assembly and by the architecture itself? The remaining of this
paper is a tentative answer to this question.

2.2 Dynamic Architecture Reconfiguration

To ensure that a component assembly will remain valid at runtime, all systems
try to control how the assembly evolves. Different evolution policies exist:

– The simplest and most restrictive is to forbid dynamic reconfigurations: as-
semblies cannot evolve at runtime. This policy is not satisfactory.

– Some systems [17,3] allow the structure defined in the architecture to be
violated when modifying component assemblies at runtime. They authorize
component and connection modifications (addition, suppression) based on
local interface type comparisons. The result is a lack of control on the as-
sembly: its validity is not guaranteed anymore.

– The third category of systems ensures that component assemblies always con-
form to the structure defined in the architecture. All the possible evolutions
must therefore be anticipated at design-time and described in the architec-
ture itself [10]. Different techniques are used. ArchJava [18] and Sofa 2.0 [5]
use patterns to know which interfaces can be connected or disconnected and

www.manaraa.com

Automated and Unanticipated Flexible Component Substitution 37

which components can be added or removed. Others [19,20] use logical rules
that are a more powerful means to describe the possible evolutions. These so-
lutions complicate the design process and make anticipation necessary while
it is not always (cognitively) possible [5,21].

Dynamic Component Removal. Among the situations to handle to enable com-
ponent assembly evolution is dynamic component removal. When removing a
component from an assembly, the main issue is to ensure that there will not
be any functional regression. The third category of systems typically allow a
removed component to be replaced by a component which provides compatible
services in order for the asssembly to still conform to the architecture. The an-
ticipation of the possible evolutions allow these systems to ensure that the new
component assembly will still satisfy the validity property that has been checked
statically on the architecture at design-time. There are two major interpretations
of component compatibility. In most of the systems [22,2,5,3], the components
must strictly be compatible: the new component must provide at least all the
provided interfaces the removed component did and it cannot require more re-
quired interfaces. In [23], compatibility is less restrictive and context-dependent.
If a provided interface from the removed component is not used by another com-
ponent in the assembly (not used in this context), the new component is not
required to provide this interface (as it is not necesssary in this context). On
the other hand, the new component can have extra required interfaces as soon
as those interfaces find a compatible provided interface among the components
of the assembly. This context-dependent definition of component compatibility
allows better adaptability of the component assemblies.

Discussion. There are two main restrictions to the state of the art solutions
to complete a component assembly after a component has been dynamically
removed:

1. Anticipating all possible evolutions to include their description in the initial
description of the architecture at design-time is not always possible because it
requires to know all the situations that may occur in the future of the system.
Ideally, it should be better to try and manage the evolution of software
assemblies in an unanticipated way.

2. Replacing the removed software component by a single component is not
always possible because it is quite unlikely that a component having com-
patible interfaces exist among the potential candidates for substitution. In
the more general case when such an adequate component does not exist, it
might be interesting to replace the removed component by a set of linked
components that together can provide the required services.

Proposing a solution to replace a removed component by an assembly of com-
ponents in an unanticipated way while trying as much as possible to guarantee
the quality (executability) of the assembly is the initial motivation for the work
presented in this paper.

www.manaraa.com

38 N. Desnos et al.

3 Automated and Unanticipated Flexible Component
Substitution

In previous work, we proposed [24] and optimized [6] a solution to automatically
build component assemblies from components, given a set of functional objec-
tives. The building process uses ports, which are extra information we suggest to
add to components, and guarantees that the suggested assemblies are complete.

The idea we develop in this paper is to use this building process in order
to re-build an assembly after a component has been removed, thus replacing a
single component by a whole sub-assembly which is a more flexible solution. This
can be done in four steps: (1) removing the target component, (2) removing all
the (consequently) dead components, (3) re-build the assembly by adding new
components and new bindings until the assembly is complete and (4) checking
the validity of the suggested assembly.

In the remaining of this section, we first briefly present how primitive and
composite ports are abstract concepts that embody the information needed to
automatically build complete assemblies and describe the automatic building
process. We then try to formalize the building process and rely on this formal-
ization to describe how it can be used for component substitution (steps 2 and
3 listed above).

3.1 Building Valid Component Assemblies from Port Enhanced
Components

This section briefly describes how adding ports to components provides a means to
automatically build complete component assemblies [24,6]. Existing approaches
usually statically describe architectures in a top-down manner. Once the archi-
tecture is defined, they verify its validity using costly validity checking algorithms
[11,12,13].Ourbuilding of assemblies fromcomponents obeys an iterative (bottom-
up) process. This makes the combinatorial cost of these algorithms critical and pre-
vents us from using them repeatedly, as a naive approach would have suggested to.
To reduce the complexity, we chose to simplify the information contained in pro-
tocols and to represent it in a more abstract and usable manner through primitive
and composite ports. Ports allow us to build a set of interesting complete assem-
blies from which it is possible to choose and check the ones that are best adapted
to the architect’s needs.

Primitive and Composite Ports. The idea for building a complete component
assembly is to start from the functional objectives and to select the suitable
components and make necessary links between them. Completeness is a global
property that we are going to guarantee locally, in an incremental way all along
the building process. The local issue is to determine which interfaces to connect
and where (to which component) to connect them. This information is hidden
into behavior protocols where it is difficult to exploit in an incremental assem-
bly process. We are going to enhance the component model with the notion of

www.manaraa.com

Automated and Unanticipated Flexible Component Substitution 39

port, in order to model the information that is strictly necessary to guarantee
completeness in an abstract way. Primitive and composite ports will therefore
represent two kinds of connection constraints on interfaces, so that the necessary
connections can be correctly determined. In some way, ports express the different
usage contexts of a component, making it possible to connect only the interfaces
which are useful for completeness. As in UML 2.0 [25], one can also consider that
the functional objectives of an architecture are represented by use cases, that
collaborations concretely realize use cases and contain several entities that each
play a precise role in the collaboration. Primitive and composite ports can be
considered as the part of the component that enables the component to play a
precise role to realize a given use case.

Primitive ports are composed of interfaces, as in many other component mod-
els [25,26]. Ports are introduced as a kind of structural meta-information, com-
plementary to interfaces, that group together the interfaces of a component
corresponding to a given usage context. More precisely, a primitive port can be
considered as the expression of a constraint to connect a set of interfaces both
at the same time and to a unique component.

In Figure 2, the Money Dialogue primitive port gathers the Dialogue and
the Money interfaces from the Client component. It expresses a particular us-
age context for this component. The connection between two primitive ports
is an atomic operation that connects their interfaces: two primitive ports are
connected together when all the interfaces of the first port are connected to in-
terfaces of the second port (and reciprocally). Thus, port connections make the
building process more abstract (port-to-port connections) and more efficient (no
useless connections). In this example, the Money Dialogue primitive port from
the Client component is connected to the Money Dialogue primitive port from
the ATM component.

Composite ports are composed of other ports. A composite port expresses a
constraint to connect a set of interfaces at the same time but possibly to different
components. In Figure 2, the ATM component has a composite port which is
composed of the two Money Dialogue and Money Transaction primitive ports.

Like a designer has to do with protocols, ports have to be manually added to
document the design of components; however, we are currently working on their
automatic generation from behavior protocols.

Completeness of an Assembly as Local Coherence of its Components. Calculating
the completeness of an already built component assembly is of no interest in an
incremental building approach. Our idea is to better consider a local property of
components. We call this property coherence and have shown [24] that it is a
necessary condition for validity. Intuitively, we can see that when all components
of an assembly are coherent, the assembly is complete. A component is said to
be coherent if all its composite ports are and a composite port is coherent if its
primitive ports are connected in a coherent way (see below).

More formally, completeness can be described after setting some preliminary
definitions.

www.manaraa.com

40 N. Desnos et al.

Fig. 2. Example of components with primitive and composite ports

– An interface is characterized by a set of operations.
– We define a component C as a quadruple:

C = (PrvC ,ReqC ,PrimC ,CompC)

PrvC is the set of C ’s provided interfaces and ReqC its set of required in-
terfaces. PrimC is the set of C ’s primitives ports and CompC its set of
composite ports.

– We denote by IntC = PrvC ∪ ReqC the whole set of C ’s interfaces, and
PortsC = PrimC ∪ CompC the whole set of C ’s ports.

– A primitive port ρ is a set of interfaces. For any primitive port ρ of C ,
ρ ⊆ IntC . We denote by ρ̂ the fact that, with respect to a set of components,
ρ is connected—i.e., any required (resp. provided) interface of ρ is correctly
linked with a provided (resp. required) interface of another (primitive) port.

– A composite port γ of C is a set of ports, primitives or composites, from C .
– Let γ ∈ CompC be a composite port of C . We define PrimPorts∗(γ), resp.

CompPorts∗(γ), as the set of primitive, resp. composite, ports that are di-
rectly or indirectly contained in γ:

PrimPorts∗(γ) = {ρ ∈ γ ∩ PrimC} ∪
⋃

γ′∈γ∩CompC

PrimPorts∗(γ′)

CompPorts∗(γ) = {γ′ ∈ γ ∩ CompC } ∪
⋃

γ′∈γ∩CompC

CompPorts∗(γ′)

– We denote γ̂ when all primitive ports contained in γ are connected3:

γ̂ = ∀ ρ ∈ PrimPorts∗(γ) · ρ̂

3 As in VDM [27] and B [28], “·” is used to separate the (typed) variable introduced
by the quantifier and the associated predicate.

www.manaraa.com

Automated and Unanticipated Flexible Component Substitution 41

– We define a relation Unrelated between two different composite ports γ and
γ′ of CompC , denoting that neither port is directly or indirectly composed
of the other:

Unrelated(γ, γ′) = γ �= γ′ ∧ γ /∈ CompPorts∗(γ′) ∧ γ′ /∈ CompPorts∗(γ)

– Let γ ∈ CompC be a composite port. Shared(γ) is the set of primitive ports
shared by γ and by another unrelated composite port of C :

Shared(γ) = {ρ ∈ PrimPorts∗(γ) |
∃ γ′ ∈ CompC · Unrelated(γ′, γ) ∧ ρ ∈ PrimPorts∗(γ′)}

To determine the completeness of an assembly, we need to know if the inter-
faces that must be connected are indeed connected. The main idea is to check the
coherence of each composite port. Two cases must be checked: when the com-
posite port does not share any primitive ports with another unrelated composite
port and when it does share some primitive ports.

Let us now define the coherence of a composite port. Given a composite port γ,
three mutually exclusive cases are possible for γ to be coherent:

1. All its primitive ports are connected.
2. None of its primitive ports is connected.
3. Some, but not all, of its primitive ports are connected. In this case, γ can

still be coherent if it shares some port with another unrelated composite
port (of the same component) which is itself entirely connected. Indeed,
sharing of primitive ports represents alternative connection possibilities [6].
A partially connected composite port can represent a role which is useless
for the assembly as soon as its shared primitive ports are connected in the
context of another (significant) composite port.

– Port γ is coherent if the following holds, where ρ is restricted to primitive
ports of γ:

⊕

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀ ρ ∈ PrimPorts∗(γ) · ρ̂ (which is equivalent to γ̂)
∀ ρ ∈ PrimPorts∗(γ) · ¬ρ̂

∧

⎧
⎨

⎩

∀ ρ ∈ Shared(γ) ·
ρ̂ ⇒ ∃ γ′ ∈ CompC · Unrelated(γ, γ′) ∧ ρ ∈ PrimPorts∗(γ′) ∧ γ̂′

∀ ρ ∈ PrimPorts∗(γ) \ Shared(γ) · ¬ρ̂

– A component C is said to be coherent if all its composite ports are coherent:

∀ γ ∈ CompC · γ is coherent

– An assembly of components is said to be complete if i) all the primitive
ports which represent functional objectives are connected; ii) all its compo-
nents are coherent.

www.manaraa.com

42 N. Desnos et al.

Building Complete Component Assemblies. This coherence property allows us to
concentrate on a local property of composite ports which is easier to include in
an iterative assembly process. The principle of the automatic assembly process
(detailed in [6]) is to try and connect all the ports representing a functional
objective and iteratively discover and try to fulfill new connection needs. This
process has been implemented as the searching of a construction tree using a
depth-first policy. Backtracking is used to explore all the alternate construction
paths (alternative possible components or alternative connection choices due
to composite port intersections). This complete exploration of the construction
tree is used to guarantee that any possible solution is always found. Furthermore,
optimization strategies and heuristics have been added for the traversal of the
construction space. The use of ports, and particularly of composite ports, is
prominent in our approach: as they express the local dependencies that exist
between interfaces, ports provide a simple means to evaluate the completeness
of an architecture. As a result, the building algorithm provides a set of interesting
complete architectures. Since architecture completeness is a necessary condition
for architecture validity, the resulting set of complete architectures thus provides
a reduced search space on which classical correctness checkers such as [5] are
finally used on few selected assemblies.

3.2 Flexible Component Substitution Using the Automatic Building
Process

To react to the dynamic removal of a software component, we propose a two
step process that allows a flexible replacement of the missing component:

1. analyze the assembly from which the component has been removed and re-
move the now useless (dead) components,

2. consider the incomplete component assembly as an intermediate result of
our iterative building algorithm and therefore run the building algorithm on
this incomplete assembly to re-build a complete assembly.

Removing the Dead Components. When a component has been removed from a
complete assembly, there are parts of the assembly that become useless. Indeed,
some of the components and connections in the original assembly might have
been there to fulfill needs of the removed component. To determine which parts
of the assembly have become useless, let us define a graph which provides an
abstract view of the assembly.

An assembly can be represented as a graph where each node represents a
component and each edge represents a connection between two (primitive) ports
of two of its components. We also distinguish two kinds of components: those
which fulfill a functional objective—i.e., the components which contain a port
which contains an interface which contains a functional objective—and those
which do not (cf. Figure 3).

An assembly A can then be seen as a graph along with a set of functional
objectives:

A = (GA,FOA)

www.manaraa.com

Automated and Unanticipated Flexible Component Substitution 43

Fig. 3. An assembly can be seen as an abstract graph (a) and divided in two sets of
connected components when a component has been removed (b)

Here, GA = (CmpsA,ConnsA) is a graph, with CmpsA the set of nodes—
each node being a component, ConnsA the set of edges—each edge indicating
the existence of some primitive port connection between the components, and
FOA ⊆

⋃
C∈CmpsA PrimC the set of primitive ports that contain some functional

objectives4.
If we consider the graph that results from the removal of the node representing

the removed component, it is possible to partition it in two parts: the connected
components5 that have at least a node which contains a functional objective and
the connected components that have no node that contains a functional objec-
tive. The second part of the graph is no longer useful because the components
of this part of the graph were not in the assembly to fulfill functional objectives
but to fulfill the needs of the removed component. Removing this part of the
graph amounts to removing now useless parts of the assembly before trying to
re-build the missing part with new components and connections.

Let A = (GA,FOA) be an assembly and let C ∈ CmpsA be the component
to remove. We define HA,C as the graph GA from which we removed compo-
nent C and all the edges (denoted by ConnsC) corresponding to primitive port
connections between C and another component of GA:

HA,C = (CmpsA \ {C},ConnsA \ ConnsC)

We define LA,C the live connected components of HA,C as the graph composed
of all the connected components of HA,C that have at least a node which contains
a functional objective.

We also define DA,C the dead connected components of HA,C as the graph
composed of all the connected components of HA,C that have no node which
contains a functional objective.

4 Recall that a functional objective is simply an operation defined in one of the pro-
vided interfaces.

5 In this subsection of the paper, connected component refers to a subgraph that is
connected, meaning that there exists a path between any of its two nodes.

www.manaraa.com

44 N. Desnos et al.

Let us just notice that:

HA,C = LA,C ∪ DA,C

Figure 3 illustrates the definitions of LA,C and DA,C . When a component is
removed from the assembly, it is possible to remove all the components which
do not participate any more to the completeness. Components from the dead
connected components DA,C can be removed from the assembly because they
only participated to the coherence of the removed component.

Removing the dead components is a necessary step because keeping useless
components add useless dependencies that make the resulting assembly consid-
erably bigger thus complicating the building process, making the validity checks
more difficult and making the assembly more subject to failures, less open for
extensions, etc. Let us just also note that the components in DA,C are dead
components but that there still might be useless components in LA,C (those we
keep). We are thinking of future improvements on the detection of dead compo-
nents that would better exploit the protocols.

3.3 Re-building the Removed Part from the Architecture

Once the dead components have been removed from the component assembly,
the assembly contains all the components necessary to ensure completeness but
one (the removed component) and its dependent components. Some of the de-
pendencies of the remaining components are not yet satisfied. The issue is to find
a component (like other systems do) or a series of assembled components that
can fulfill the unsatisfied dependencies as the removed component did. We as-
sume that it is quite unlikely that there exists a component that exactly matches
the role the removed component had in the assembly. It is more likely (more flex-
ible) that we have the possibility of replacing the removed component by a set
of assembled components that, together, can replace the removed component.

In order to do so, we use the automatic building process presented in Sec-
tion 3.1. The partial assembly in LA,C is the starting point. It is considered as
an intermediate result of the global building process. It is not complete yet: there
still exist unsatisfied dependencies that were fulfilled by the removed component.
The building process we described above is used to complete the architecture.

Evolution Scenario. On our ATM example, Figure 4 (a) represents the graph
corresponding to the example of Figure 2. The Client node represents the Client
component which contains a functional objective. The other nodes (MemberBank ,
ATM and CentralBank) represent components which do not contain any func-
tional objective. Figure 4 (b) shows that the partial component assembly from
LATMexample,MemberBank is not complete because the ATM component has be-
come incoherent after the MemberBank component and the consequently dead
components (DATMexample,MemberBank = {CentralBank}) have been removed.
To complete the assembly, new components must be added. Figure 4 (c) illus-
trates the result of this re-building process: The IndependentBank component

www.manaraa.com

Automated and Unanticipated Flexible Component Substitution 45

Fig. 4. Evolution scenario on the ATM example

is connected to the BankIS component and they both replace the components
that had been removed to complete the ATM example assembly.

Figure 5 details the resulting architecture. In this example, the component
to remove is the MemberBank component. When the MemberBank component
is removed, completeness of the architecture is lost. Indeed, the ATM compo-
nent is not locally coherent any more. Its Money Withdraw composite port is
not coherent because the primitive port Money Transaction is not connected
and the Money Dialogue primitive port is connected. The CentralBank compo-
nent constitutes the DATMexample,MemberBank graph and can also be removed.
Completeness is researched by selecting and connecting new components. In this
example, an IndependentBank component is connected to the ATM component
through its Money Transaction primitive port. At this step, the assembly is
not yet complete because all the components are not yet coherent. Indeed, the
IndependentBank component is not coherent because its Manage withdraw com-
posite port is not coherent. Another component is thus added to the assembly:
the BankIS component is connected to the IndependentBank component through
its Request Data primitive port. At that point, the assembly is complete. One
can consider that the removed component has been replaced by an assembly
composed of the IndependentBank and the BankIS components6.

3.4 Implementation and Experimentation

The two processes presented here (automatic component assembly building and
dynamic substitution after a component removal) have both been implemented
as an extension of the open-source Julia implementation7 of the Fractal compo-
nent model [3]. Our dynamic reconfiguration approach has been tested in the
same environment we used to test the building process. To do so, we randomly
generated the interfaces and ports of generated components, randomly choose
functional objectives and then run the building process in order to build full
complete assemblies [6]. For example, experiments were run with a library of 38

6 In the example, it is a coincidence that the total number of removed components
equals the number of components that are used to complete the assembly.

7 http://www.objectweb.org

http://www.objectweb.org

www.manaraa.com

46 N. Desnos et al.

Fig. 5. Dynamic reconfiguration of the assembly

generated components. The search space contained more than 325 000 complete
assemblies (complete search stopped after 15 hours). Among those complete as-
semblies, the largest ones have 48 connections and the smallest ones 18 connec-
tions. As a comparison, our optimized building algorithm finds the only minimal
architecture composed of 7 connections in less than a second. To test our solu-
tion for evolution, a randomly chosen component was removed from a complete
assembly and the substitution process was then triggered considering that the
removed component was not available anymore. Those experiments showed that
our solution provides alternative substitution possibilities (compared to existing
one-to-one substitution mechanisms) thus is more flexible because it does not de-
pend on the presence of a component that is able to exactly match the role of the
removed one. In these experiments, in most cases, the result of substitution was
a one-to-many substitution. We also noticed that the complexity of the mech-
anism exposed here is not higher than the complexity of the complete building
process (which was efficient thanks to optimization strategies and heuristics).

4 Conclusion

The contribution of this paper is double. Firstly, we present an innovative so-
lution for the dynamic replacement of a component from an assembly. This
solution is not a component-to-component substitution but allows replacing
a single component by a whole set of linked components while guaranteeing
there is no functional regression. Secondly, we propose a property to identify
useless components that can be removed. The advantage of this approach is
that it can increase the number of reconfiguration possibilities by being less

www.manaraa.com

Automated and Unanticipated Flexible Component Substitution 47

constraining. We implemented our solution as an extension of an existing open
source implementation of the Fractal component model and successfully tested
it on generated components.

The main limitations of this work is that we have not been able to try it on
real components8 but our experimentation framework allowed us to validate our
ideas. Another limitation to our approach is that ports need to be added to the
components in order to use them in our mechanisms. We believe this limitation is
not very strong because ports can be provided by the component designer as an
abstract view of the behavioral roles of the components that document the com-
ponents, generated from protocols (in a design for reuse process) or abstracted
from running assemblies that provide execution contexts for the components (in
a design by reuse approach).

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA (2002)

2. Plásil, F., Balek, D., Janecek, R.: SOFA/DCUP: Architecture for component trad-
ing and dynamic updating. In: Proc. of the Int. Conf. on Configurable Distributed
Systems, Washington, DC, pp. 43–52. IEEE Computer Society Press, Los Alamitos
(1998)

3. Bruneton, E., Coupaye, T., Stefani, J.: Fractal specification - v 2.0.3 (2004),
http://fractal.objectweb.org/specification/index.html

4. George, B., Fleurquin, R., Sadou, S.: A substitution model for software compo-
nents. In: QaOOSE’06. Proc. of the 2006 ECOOP Workshop on Quantitative Ap-
proaches on Object-Oriented Software Engineering, Nantes, France (2006)

5. Bures, T., Hnetynka, P., Plásil, F.: Sofa 2.0: Balancing advanced features in a hi-
erarchical component model. In: SERA, pp. 40–48. IEEE Computer Society Press,
Los Alamitos (2006)

6. Desnos, N., Vauttier, S., Urtado, C., Huchard, M.: Automating the building of
software component architectures. In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006.
LNCS, vol. 4344, pp. 228–235. Springer, Heidelberg (2006)

7. Brown, A.W., Wallnau, K.C.: The current state of CBSE. IEEE Software 15(5),
37–46 (1998)

8. Crnkovic, I.: Component-based software engineering—new challenges in software
development. Software Focus (2001)

9. Dijkman, R.M., Almeida, J.P.A., Quartel, D.A.: Verifying the correctness of
component-based applications that support business processes. In: Crnkovic, I.,
Schmidt, H., Stafford, J., Wallnau, K. (eds.) Proc. of the 6th Workshop on CBSE:
Automated Reasoning and Prediction, Portland, Oregon, pp. 43–48 (2003)

10. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languages. IEEE Trans. Softw. Eng. 26(1), 70–93
(2000)

8 It is not yet possible to find real component bases that are already documented with
protocols. We believe that research work aiming at facilitating component reuse
will encourage the building of such component repositories and provide us better
experimentation frameworks in the future.

http://fractal.objectweb.org/specification/index.html

www.manaraa.com

48 N. Desnos et al.

11. Inverardi, P., Wolf, A.L., Yankelevich, D.: Static checking of system behaviors using
derived component assumptions. ACM Trans. Softw. Eng. Methodol. 9(3), 239–272
(2000)

12. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Proc. of the 8th European
software engineering conference, pp. 109–120. ACM Press, New York (2001)

13. Mach, M., Plásil, F., Kofron, J.: Behavior protocols verification: Fighting state
explosion. International Journal of Computer and Information Science (2005)

14. Wallnau, K.C.: Volume III: A technology for predictable assembly from certifiable
components (pacc). Technical Report CMU/SEI-2003-TR-009, Carnegie Mellon
University, Pittsburgh, OH, USA (2003)

15. Adamek, J., Plásil, F.: Partial bindings of components - any harm? In: APSEC
’04. Proc. of the 11th Asia-Pacific Software Engineering Conference, Washington,
DC, pp. 632–639. IEEE Computer Society Press, Los Alamitos (2004)

16. Reussner, R.H., Poernomo, I.H., Schmidt, H.W.: Reasoning on software architec-
tures with contractually specified components. In: Cechich, A., Piattini, M., Valle-
cillo, A. (eds.) Component-Based Software Quality. LNCS, vol. 2693, pp. 287–325.
Springer, Heidelberg (2003)

17. Magee, J., Kramer, J.: Dynamic structure in software architectures. In: SIGSOFT
’96. Proc. of the 4th ACM SIGSOFT symposium on Foundations of software en-
gineering, pp. 3–14. ACM Press, New York (1996)

18. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture
to implementation. In: Proc. of ICSE, Orlando, FL, pp. 187–197. ACM Press, New
York (2002)

19. Inverardi, P., Wolf, A.L.: Formal specification and analysis of software architectures
using the chemical abstract machine model. IEEE Trans. Softw. Eng. 21(4), 373–
386 (1995)

20. Allen, R.J.: A formal approach to software architecture. PhD thesis, Carnegie Mel-
lon, School of Computer Science, Issued as CMU Technical Report CMU-CS-97-144
(1997)

21. Matevska-Meyer, J., Hasselbring, W., Reussner, R.H.: A software architecture de-
scription supporting component deployment and system runtime reconfiguration.
In: WCOP ’04. Proc. of the 9th Int. Workshop on Component-Oriented Program-
ming, Oslo, Norway (2004)

22. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-
lution. In: Intl. Conf. on Software Engineering, Kyoto, Japan (1998)

23. Brada, P.: Component change and version identification in SOFA. In: Bartosek, M.,
Tel, G., Pavelka, J. (eds.) SOFSEM 1999. LNCS, vol. 1725, pp. 360–368. Springer,
Heidelberg (1999)

24. Desnos, N., Urtado, C., Vauttier, S., Huchard, M.: Helping the architect build
component-based architectures. In: Rousseau, R., Urtado, C., Vauttier, S. (eds.)
LMO2006. Proc. of the 12th french speaking conference on Languages and Models
with Objets, Nı̂mes, France, Hermès, pp. 37–52 (in french) (2006)

25. OMG: Unified modeling language: Superstructure, version 2.0 (2002),
http://www.omg.org/uml

26. Lobo, A.E., de C. Guerra, P.A., Filho, F.C., Rubira, C.M.F.: A systematic approach
for the evolution of reusable software components. In: Black, A.P. (ed.) ECOOP
2005. LNCS, vol. 3586, Springer, Heidelberg (2005)

27. Jones, C.: Systematic Software Development using VDM, 2nd edn. Prentice-Hall,
Englewood Cliffs (1990)

28. Abrial, J.R.: The B-Book, Assigning programs to meanings. Cambridge University
Press, Cambridge (1996)

http://www.omg.org/uml

www.manaraa.com

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 49–65, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Dynamic Adaptation of Aspect-Oriented Components

Cristóbal Costa1, Jennifer Pérez2, and José Ángel Carsí3

1,3 Department of Information Systems and Computation
Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain

2 Department of Organization and Information Structure
Polytechnic University of Madrid, Ctra. Valencia, km7, 28051 Madrid, Spain

ccosta@dsic.upv.es, jeperez@eui.upm.es, pcarsi@dsic.upv.es

Abstract. Current works address self-adaptability of software architectures to
build more autonomous and flexible systems. However, most of these works
only perform adaptations at configuration-level: a component is adapted by
being replaced with a new one. The state of the replaced component is lost and
related components can undergo undesirable changes. This paper presents a
generic solution to design components that are capable of supporting runtime
adaptation, taking into account that component type changes must be
propagated to its instances. The adaptation is performed in a decentralized and
autonomous way, in order to cope with the increasing need for building
heterogeneous and autonomous systems. As a result, each component type
manages its instances and each instance applies autonomously the changes.
Moreover, our proposal uses aspect-oriented components to benefit from their
reuse and maintenance, and it is based on MOF and Reflection concepts to
benefit from the high abstraction level they provide.

Keywords: runtime adaptation, dynamic evolution, component adaptability,
reflection, CBSD, software architectures, AOSD.

1 Introduction

Complex software systems frequently undergo changes during their lifetime. This is
due to the fact that they are exposed to many sources of variability and also have a
dynamic nature. It is very common for unforeseen bugs to appear during system
execution, and they will have to be corrected at run-time. In order to address this
software adaptability, most approaches modify the subsystem that must be updated
offline, and once the modification has been completed, they restart the entire system
to reflect the new changes. However, this solution has several disadvantages: (i) the
state of the system that is running is lost, unless it has been previously saved; (ii) the
shutdown and restart processes of the system could increase the performance cost;
(iii) a lot of complex systems cannot stop their activity (such as servers or real-time
systems). As a result, a solution that overcomes these disadvantages must be
provided.

This work focuses specifically on two approaches of software development that
improve the reuse, maintenance and adaptability of software. They are the
Component-Based Software Development (CBSD) approach [10, 33] and the

www.manaraa.com

50 C. Costa, J. Pérez, and J.Á. Carsí

Aspect-Oriented Software Development (AOSD) approach [15, 16]. CBSD reduces
the complexity of software development and improves its maintenance by increasing
software reuse and independence. CBSD decomposes the system into reusable and
independent entities called components. By extension, these advantages are provided
by software architectures [26, 30] since architectural models are constructed in terms
of components and their interactions.

Both software architectures and AOSD facilitate software adaptation. On the one
hand, software architectures allow us to focus on changes at the component level
instead of changes at the implementation level. Software architecture adaptability is
managed in terms of the creation and destruction of component instances and their
links. This kind of adaptation is called Dynamic Reconfiguration or Structural
Dynamism [8], which has been explored by a lot of research works [3]. However,
most of these works only address dynamic adaptation at the architectural level. The
internal adaptation of running components is not considered: a component is adapted
offline and then the old component (which is running) is replaced with the adapted
one. In several cases, runtime component replacement is not enough if the
preservation of the component state is mandatory; for instance, when a component
needs to be extended with new properties (such as security, persistence, etc.) and its
functional state and properties are not modified. In order to support self-adaptability
of software architectures, a solution that allows us to both internally update a
component at runtime and to preserve the old state not subject to change must be
provided.

On the other hand, Aspect-Oriented Models propose the separation of the
crosscutting concerns of software systems into separate entities called aspects. This
separation avoids the tangled concerns of software and allows the reuse of the same
aspect in different entities of the software system (objects, components, modules,
etc.). This separation of concerns also improves the isolated maintenance of the
different concerns of the software systems. Aspect-Oriented Software Development
(AOSD) [15] extends the advantages that aspects provide to every stage of the
software life cycle. For this reason, several proposals for the integration of the aspects
in software architectures have emerged [5, 6]. AOSD allows us to manage changes
from the different concerns in an independent way. This facilitates evolution and
provides flexibility to adapt components by adding or removing aspects to software
architectures. In addition, interaction policies between different concerns of software
architectures can be easily changed by adding or removing aspect synchronizations.

This paper proposes a solution to support the dynamic component adaptation of
aspect-oriented software architectures. Specifically, the solution is based on the
PRISMA approach, which combines AOSD with software architectures. The dynamic
adaptation proposal that is presented in this paper provides mechanisms for
dynamically changing the internal structure of PRISMA components. This internal
change preserves the component state and minimizes the impact of the change on
other components that are connected to the updated component. In addition, this
proposal takes into account that component type changes must be propagated to each
one of its running instances, so the needed mechanisms are also described.

This paper is structured as follows. The PRISMA approach is introduced in section
2. Section 3 presents the two concepts on which our proposal is based: MOF and
Computational Reflection. In section 4, our proposal to support dynamic adaptation of

www.manaraa.com

 Dynamic Adaptation of Aspect-Oriented Components 51

component types is presented in detail. Related works that address runtime component
adaptation are discussed in section 5. Finally, conclusions and further works are
presented in section 6.

2 PRISMA

PRISMA is an approach to develop technology-independent, aspect-oriented software
architectures [22]. It integrates software architecture and AOSD in order to take
advantage of the two approaches. The PRISMA approach is based on its model [24]
and its formal Aspect-Oriented Architecture Description Language (AOADL) [23].

In order to define our software adaptation proposal, we chose PRISMA from the
different approaches that combine AOSD and software architectures because of the
advantages that it offers. Its main advantages are the following: (1) components and
aspects are independent of each other, so they provide good properties for dynamic
evolution; (2) the PRISMA model is completely formalised and its AOADL is a
formal language, so the evolution requirements of our proposal can be easily
formalized; (3) PRISMA software architectures can be automatically compiled for a
technological platform and a programming language using code generation
techniques; and (4) a PRISMA tool has been developed to cope with the challenge of
developing aspect-oriented software architectures following the Model-Driven
Development (MDD) paradigm [12, 19].

The PRISMA model introduces aspects as first-order citizens of software
architectures. As a result, PRISMA specifies different crosscutting concerns
(distribution, safety, context-awareness, coordination, etc.) of the software
architecture using aspects. From the aspect-oriented point of view, PRISMA is a
symmetrical model [13] that does not distinguish a kernel or core entity to
encapsulate functionality; functionality is also defined as an aspect. A concern can
be specified by several aspects of a software architecture, whereas a PRISMA
aspect represents a concern that crosscuts the software architecture. This
crosscutting is due to the fact that the same aspect can be imported by more than
one architectural element (i.e. a component or a connector) of a software
architecture. In this sense, aspects crosscut those elements of the architecture that
import their behaviour (see Figure 1).

p (g

Fig. 1. Crosscutting-concerns in PRISMA architectures

www.manaraa.com

52 C. Costa, J. Pérez, and J.Á. Carsí

The PRISMA approach takes advantage of the notion of aspect from the beginning
of the system definition. The change of a property only requires the change of the
aspect that defines it, and then, each architectural element that imports the changed
aspect is also updated. A PRISMA architectural element can be seen from two
different views: internal and external. In the external view, architectural elements
encapsulate their functionality as black boxes and publish a set of services that they
offer to other architectural elements (see Figure 2.A). These services are grouped into
interfaces to be published through the ports of architectural elements. As a result,
ports are the interaction points of architectural elements.

The internal view shows an architectural element as a prism (white box view).
Each side of the prism is an aspect that the architectural element imports. In this way,
architectural elements are represented as a set of aspects (see Figure 2.B) and their
synchronization relationships,which are called weavings. A weaving indicates that the
execution of an aspect service can trigger the execution of services in other aspects.
The weaving process of an architectural element is composed of a set of weavings.

Fig. 2. Views of an architectural element

In PRISMA, in order to preserve the independence of the aspect specification from
other aspects and weavings, weavings are specified outside aspects and inside
architectural elements. Weavings weave the different aspects that form an
architectural element. As a result, aspects are reusable and independent of the context
of application, which facilitates their maintenance.

3 MOF+Computational Reflection

In order to illustrate our proposal, we use a simple case study throughout the paper.
This case study consists of a robotic arm whose movements are controlled by
different joints: Base, Shoulder, Elbow, Wrist and Gripper. These joints are modeled
as instances of a Joint component type. The specific initialization values of each Joint
instance are provided at its instantiation. The behaviour of the Joint is defined by two
aspects: (i) a functional aspect, Fun, which defines how the movements are sent to
each hardware robotic joint, and (ii) a safety aspect, Saf, which checks that the Joint
movements are between the maximum and minimum values that are allowed to
ensure the safety of the robotic arm and its environment. Services are exported to
other components through the port OperPort.

One of the most important non-functional requirements of the Joint component is
that its instances are going to be executed for long periods of time in an high
availability software system. Thus, if an update is needed, it will have to be applied at

www.manaraa.com

 Dynamic Adaptation of Aspect-Oriented Components 53

runtime without disturbing the system execution. For this reason, the Joint component
provides an evolution infrastructure to support its runtime adaptation without forcing
the system to be restarted. In our case study new requirements emerged after the
execution of the Joint component, specifically, the inclusion of an emergency service
to instantly stop all the robotic movements. This requirement involves the adaptation
of the safety aspect. A new component type, called Updater, was developed to replace
the old safety aspect (Saf) by a new one (Saf2) at runtime.

The evolution infrastructure proposed in this work is based on several key
concepts. First, to be able to evolve components, we must distinguish between
component instances and component types, since they are placed at different
abstraction levels. The OMG Meta-Object Facility (MOF) specification [20] allows us
to clearly distinguish between types and instances in a proper and elegant way. MOF
defines a three-level “architecture” that is focused on Model-Driven Development
[19]. Its main purpose is the management of model descriptions at different levels of
abstraction and their static modification. The upper layer (M3) is the most abstract
one (see M3 layer, Figure 3). This layer defines the abstract language used to describe
the entities of the lower layer (metamodels). The MOF specification proposes the
MOF Model as the abstract language for defining all kind of metamodels, such as
UML or PRISMA.

Fig. 3. Meta-Object Facility (MOF) layers and PRISMA Components

The metamodel layer (M2) defines the structure and semantics of the models defined
at the lower layer. The PRISMA metamodel is defined at this level: PRISMA components
are an aggregation of Aspects, Ports, and Weavings (see M2 layer,
Figure 3). Component behaviour is defined by importing aspects and by synchronizying
them through the use of weavings. Published services are defined through the use of
ports. The M1 layer comprises the models that describe data. These models are described
using the primitives and relationships described in the metamodel layer (M2). PRISMA

component types (i.e.: Joint and Updater) are placed in the M1 layer (see M1 layer,

www.manaraa.com

54 C. Costa, J. Pérez, and J.Á. Carsí

Figure 3). For instance, the Joint component imports two aspects: a Functional aspect and
a Safety aspect (see Fun and Saf aspects, M1 layer, Figure 3), which are synchronized
through a weaving. In addition, services from the Functional aspect are provided to other
components through a port. Due to the semantics of PRISMA metamodel defined at M2
layer, there is a fourth level, the M0 layer, where PRISMA component instances (i.e.:
Base, Elbow, UpdSafety, etc.) are placed (see M0 layer, Figure 3). These instances
behave as described in the component type.

However, the MOF specification was designed to specify and manage technology-
neutral metamodels from a static point of view. MOF does not describe how to
address the dynamic adaptation of its elements at run-time. For this reason, the
Computational Reflection concept [17, 31] is used to provide dynamic adaptation to
models (in our case, component types). Computational Reflection is the capability of a
software system to reason about itself and act upon itself. In order to do so, a system
must have a representation of itself that is editable and that is causally connected to
itself. Thus, the changes that are made in this representation (which is managed as
data) will be reflected on the system, and vice versa. Therefore, a system has two
different views of itself: the base-view and the meta-view (see Figure 4.A). The base-
view “executes” the system business logic behaviour and modifies a set of values that
define the process state. The meta-view defines how the system behaves; it is a
“description” of the system. This view allows the system to change its behaviour by
modifying its representation. The process of obtaining an editable representation of
the system (the meta-view) is called reification, and the opposite process is called
reflection (see Figure 4.A). The main advantage of computational reflection is the fact
that it describes system self-adaptation in a simple and natural way.

Fig. 4. Dual views of a reflective system

The PRISMA metamodel describes the component structure and behaviour by
means of aspects, weavings, and ports (see M2 layer, Figure 3). For this reason, the
meta-view of a PRISMA component type is an editable data structure (composed of
aspects, ports, and weavings) that “describes” the component type behaviour. For
instance, the meta-view of the Joint component type describes a component that is
made of: (i) the aspects Fun and Saf, (ii) a port OperPort, and (iii) a weaving between
the aspects Saf and Fun (see Type description, Figure 4.B). The base-view of a
PRISMA component type is the “execution” of these aspects, ports, and weavings
“described” in the meta-view. For instance, the base-view of the Joint component type
is the set of all its instances: Base, Elbow, Shoulder, etc. (see Type, Figure 4.B)

www.manaraa.com

 Dynamic Adaptation of Aspect-Oriented Components 55

The abstraction layers provided by MOF and the capability to describe self-
adaptation provided by Computational Reflection allow us to define the necessary
infrastructure to dynamically adapt the internal component structure. In this work, we
focus only on component types (M1 layer) and component instances (M0 layer). Each
component type has a dual view: the base-view and the meta-view. However, each
view is in a different MOF layer (see Figure 5) as described below.

Each component instance (i.e.: Elbow, Wrist, …) is a running process which has its
own state and behaves as the component type (i.e.: Joint) specifies. Thus, the
behaviour of the instance is “provided” by the component type base-view (i.e. the
running type, see base-view1 at M0, Figure 5 below). This behaviour is “described”
by the component type meta-view at the upper layer (see the meta-view1 at the M1
layer, Figure 5).

Moreover, the component type can be viewed as a running process that also has
state and behaviour: (i) the state of the component type is its meta-view (an editable
representation of itself), and (ii) the component type behaviour is provided by the
base-view of the PRISMA Component (see the base-view2 at the M1 layer, Figure 5).
The PRISMA Component base-view “provides” the set of evolution services to modify
the state of a component type (which is the component type representation). These
evolution services are “described” in the PRISMA Component meta-view at the M2
layer (see meta-view2 at M2, Figure 5).

Fig. 5. Dual view of reflective component types

The evolution services are directly provided and executed by each component type
(in our example, the Joint component), because the PRISMA Component base-view is
part of each component type (see Joint base-view2, at the M1 layer, Figure 5). As an
evolution service changes the component type internal representation (the meta-view),
those changes are also reflected in the component type base-view. This means that
each component instance would have its structure and behaviour updated according to
changes made on the component type meta-view. For instance, as a consequence of
the reflection relationship (see reflection, Figure 5), the execution of the evolution
service addAspect(“Saf2”) on the Joint component type meta-view will trigger the
addition of the aspect Saf2 on each instance of Joint (i.e.: Base, Shoulder, etc.).

The model described here allows the description of the dynamic adaptation process
from a high abstraction level. However, there are some issues in the reification and

www.manaraa.com

56 C. Costa, J. Pérez, and J.Á. Carsí

reflection processes that have to be addressed in each specific implementation. The
reification process must take into account how to get the type and its internal structure
from a running component instance. The reflection process must take into account: (i)
how to spread the changes made to a component type meta-view to its component
instances, and (ii) how to change the internal structure of each component instance
without affecting those parts of the structure that have not been modified. For this
reason, in the next section we describe the mechanisms that our evolution
infrastructure provides to address these issues.

4 Dynamic Adaptation of Component Types

Once the concepts of Computational Reflection and MOF have been introduced, we
present in detail our dynamic adaptation proposal for aspect-oriented components.
The dynamic adaptation of the internal structure of components is triggered when any
evolution service provided by a component type is invoked. Then, the evolution
service modifies the component type description (the component type meta-view), and
the reflection relationship performs the internal adaptation of its instances.

4.1 Evolution of Component Types

Heterogeneous and autonomous systems require that each one of their components
implements its own adaptation mechanisms in a decentralized way. For this reason,
the main objective of our proposal is to provide internal component adaptation at
runtime in a decentralized and autonomous way. Decentralized adaptation is achieved
because there is no a centralized evolution manager that maintains and evolves all the
component types of a software architecture. Each type is the only entity that is
responsible for its instances and is the only one capable of evolving them.
Autonomous adaptation is provided in the sense that instances provide themselves
with the infrastructure necessary to be dynamically evolved in a safe way. Each
instance mantains its own state and is the only one capable of deciding the best
moment to apply the adaptations.

4.1.1 Evolution Services Provided by Component Types
The evolution services that a component type provides depend on its internal
implementation technology (in an imperative style, or in any declarative or formal
language). However, it is possible to identify those parts of the component that are
independent of technology. The main technology-independent parts of a component
are: (i) behaviour and state; (ii) ports, and (iii) internal interactions between the
different processes of the component. In PRISMA, behaviour and state are provided by
aspect composition, ports are provided by component ports, and internal interactions
are provided by weavings (they synchronize the execution of aspects). Thus, the
evolution services that a component type should provide are those that modify the
main parts of a component. We can distinguish two kinds of evolution services: Type
Evolution Services and Introspection Services.

Type Evolution Services are those related to type modification, such as additions
and removals of component parts. In PRISMA, some of the Type Evolution Services

www.manaraa.com

 Dynamic Adaptation of Aspect-Oriented Components 57

provided are: AddAspect(), RemoveAspect(), AddPort(), RemovePort(),
AddWeaving(), and RemoveWeaving().

Introspection Services are those evolution services that allow the structure of a
component to be known. In PRISMA, some of the Introspection Services provided are:
GetAspects(), GetWeavings(), and GetPorts().

4.1.2 Component Type Reflective Structure
The evolution process can be triggered by the business logic or by a user of the
system. Both the business logic of the system and the user are represented in the
architecture by means of components. Thus, the need for evolving a specific
component emerges from another component that dynamically invokes the evolution
services of the component to be updated. In our case study, the UpdSafety instance
will invoke the evolution services of the Joint type in order to introduce the new
safety requirements of the system.

However, in order to invoke the evolution services, there must be a link from the
instance layer (M0) to the model layer (M1), that is, the link between the UpdSafety
base-view and the Joint meta-view (see base and meta views in Figure 5). We call it
reification link because (i) it is an upward link between layers and (ii) it allows
instances to invoke type modification services, which are only available at an upper
layer. The reification link should be provided by any ADL on which dynamic
evolution of component types must be supported. There are several ways that a
reification link could be syntactically expressed. In PRISMA, it is described by

Fig. 6. Reflective infrastructure for component adaptation

specifying the name of the component type that has to be evolved, followed by the dot
operator “.” and the evolution service to be invoked. For instance, the UpdSafety
instance adds the aspect “Saf2” to the Joint component this way:

Joint.AddAspect(“Saf2”)

www.manaraa.com

58 C. Costa, J. Pérez, and J.Á. Carsí

“Joint” is the type to be evolved, and “AddAspect” is the evolution service to be
executed. The reification link is syntactically expressed by means of the “.” operator.
We have chosen this syntax because it is self-descriptive: component types provide
their own adaptation services.

A component type is an instance factory: it is responsible for the creation and the
destruction of its instances. For this reason, a component type manages the population
of its instances, that is, a reference to each instance that is running (see note 3, Figure
6). The instance population is usually mantained by the execution platform (i.e. the
garbage collector in Java or .NET). However, access to this information is necessary
to be able to propagate changes later. In our case study, the population of the Joint
component is composed of the instances that have been created in the initial
configuration: Base, Elbow, Shoulder, etc.

In addition, a component type provides its own evolution services to change itself
(see note 1, Figure 6). These services modify (or get information from) the meta-view
of the component type (see note 2, Figure 6). Each component type is responsible for
keeping the reification of its meta-view updated while it is running. Depending on the
implementation, the meta-view can be represented in an ADL or directly in platform-
dependent code (like C#). In our prototype, the reified structure is represented in C#
to make its programmed manipulation easy.

Thus, when the UpdSafety instance invokes the AddAspect(“Saf2”) evolution
service (by using a reification link, see Figure 6), the Joint meta-view is updated. As a
consequence of modifying the meta-view, changes are reflected, that is, they are made
available to the running system. This is done in two steps. The first step is to store the
changes made to the meta-view (i.e. the Joint representation) in order to make it
persistent, by generating the resulting ADL or platform-dependent code. The
immediate effect is that the aspect list {“Fun”; “Saf”} from the meta-view is
updated by {“Fun”; “Saf2”}. Thus, new instances of Joint will be created (by
calling Joint.Create(...)) using the updated type.

The following step is to propagate the changes to the type instances. As with
reification links, there must be a link from the model layer (M1) to the instance layer
(M0) in order to reflect the changes into each running instance. We call these links
reflection links (see the reflection links in Figure 6). A reflection link is created for
each component instance reference (the population).

4.2 Evolution of Component Instances

Component types do not directly perform evolution changes inside their instances.
These changes have to be internally executed by each instance for two reasons.

On the one hand, each instance has to decide when and how to execute its changes
in order to perform the modification in a safe way. This safe modification is
necessary: (i) to ensure that those parts that have not undergone changes are not
affected by the modification process; (ii) to guarantee that the modification is
executed once the running transactions have finished and all internal processes reach
a safe state. For this reason, each component instance (i.e. Base, Elbow, Shoulder,
etc.) is provided with an Evolution Planner aspect, whose goal is to supervise the
update process of the component instance to which it belongs.

www.manaraa.com

 Dynamic Adaptation of Aspect-Oriented Components 59

On the other hand, the adaptation process only makes sense at the instance-level,
because state-preserving runtime adaptations are very technology-dependent
operations (i.e. stopping threads, modifying memory areas, etc.). For this reason, each
instance is composed of two technology-dependent aspects: the Actuator, which is the
aspect that actually performs the changes on the internal component instance
structure, and the Sensor, which gives information about what is going on in the
component instance.

4.2.1 The Evolution Planner
The key aspect to achieving the dynamic adaptation of the internal structure of
component instances is to maximize the independence among the internal parts of a
component which may undergo changes. In this way, replacing a component internal
part has only a minimal impact on the other running parts. Those parts that are
dependent to some degree on the part being changed will only need to stop
temporarily while changes are being made.

An evolution dependency is defined as a binary relation over the set of internal
parts (P) of a component. An internal part xœ P has an evolution dependency with
other internal part y œ P, defined as EvDEP(x,y), if any change in x causes a change in
y. The total amount of possible evolution dependencies over the set of internal parts P
is defined by the mathematical permutation with repetition of P: |P|2. Since a PRISMA

component is composed of three kinds of parts (PPRISMA = {ports, weavings, aspects}),
the set of potential evolution dependencies that a PRISMA component can have is nine
(i.e.: EvDEP={ (port,aspect), (port,weaving), (port,port), …}). However, due to the
high degree of PRISMA reusability, there are actually two evolution dependencies
between the internal parts: EvDEP(aspect,port) and EvDEP(aspect, weaving). These
evolution dependencies are taken into account by the Evolution Planner.

The Evolution Planner (see note 3, Figure 7) is an aspect that has the knowledge
about how to adapt the internal structure of a component instance in a safe way. For
this reason, it is aware of what kind of evolution dependency relationships between
the component internal parts can occur when applying a dynamic change. The action
to perform is different depending on the type of change to be made: deletions,
modifications or additions. In aspect deletions, related ports and weavings need also
to be deleted. In aspect replacements or modifications, related ports and weavings
need only to be deleted if the dependency points between the aspect and the ports and
weavings are modified. In other words: (i) a port will be removed if the interface it
publishes is removed from the aspect being changed, and (ii) a weaving will be

Fig. 7. Internal structure of a component instance

www.manaraa.com

60 C. Costa, J. Pérez, and J.Á. Carsí

removed if the method it intercepts/triggers is modified in the aspect being changed.
Finally, aspects, weaving and port additions can be made without compromising other
running component parts or their communications because there is still no relationship
among them.

The Evolution Planner reflects the changes that are made to the component type
meta-view to the instance that the Evolution Planner belongs to. For this reason, the
Evolution Planner aspect provides the same evolution services as the component type,
although these services are only applied at instance-level. The adaptation changes to
be applied are received through the reflection links (see note 1, Figure 7). These
changes are the evolution services that the UpdSafety instance has applied on the
Joint component meta-view and that have been propagated to the Base Evolution
Planner through a reflection link:

RemoveAspect(“Saf”); AddAspect(“Saf2”); AddWeaving(...)

The Evolution Planner will apply these changes by coordinating the actions to be
performed by the Actuator and Sensor aspects. This coordination is done in
accordance with the correct adaptation protocols that it knows.

4.2.2 Actuator and Sensor
The Actuator (see note 4, Figure 7) is the aspect that performs the changes on the
running instance: by generating and linking code, by creating dynamic elements, by
invoking low-level adaptation mechanisms, etc. It provides additional services to
prepare component elements so that changes can be safely made. These services are:
StopAspect(), StopPort(), StopWeaving(), StartAspect(), StartPort(),
and StartWeaving(). These services are necessary in case an evolution dependency
is present, in order to avoid interactions between the part being changed and the
dependent parts. The Sensor (see note 2, Figure 7) provides services to supervise what
is going on: when an aspect has actually been added to the running component
instance; when a component part (i.e.: port, aspect, weaving) has been
started/stopped; etc. For these purposes, the Sensor provides additional services to get
the running state of each element: GetAspectState(), GetWeavingState(), and
GetPortState(). Both Sensor and Actuator are technology-dependent aspects
because they perform tasks that rely on how component instances are implemented.
The main advantage is that they allow us to abstract from platform-specific details.

The main services provided by the Actuator and the Sensor have been developed
on .NET technology [25]. A PRISMA component has been developed as a collection of
different objects (aspects, ports and weavings) that: (i) can be dynamically added or
removed; (ii) are highly independent on each other; (iii) interact with each other by
using asynchronous mechanisms. Asynchronous mechanisms are very important
because they allow internal component parts (i.e.: ports, weavings and aspects) to be
stopped and restarted after changes have been made.

5 Related Works

In the last few years, there has been greater interest in evolution research in order to
reduce the time and the cost of the maintenance process and to provide a solution for

www.manaraa.com

 Dynamic Adaptation of Aspect-Oriented Components 61

dynamic evolution. Thus, many approaches that provide mechanisms to support run-
time adaptability have been proposed. Due to space limitations in this paper, we focus
on those works related to AOSD and software architectures.

Adaptability works that are proposed by the Aspect-Oriented community usually
provide mechanisms to dynamically weave aspects to running base code1. Some
approaches are designed to support AOP for Object-Oriented Programming. These
approaches are mainly developed in Java and .NET and are platform-dependent.
SetPoint [2] allows for the dynamic addition and removal of aspects. Its weaving is
based on the evaluation of logical predicates in which the base code is marked with
meta-information that permits the evaluation of such predicates. Rapier-Loom.NET
[29] and EOS [28] both allow for the dynamic addition and removal of aspects, but
weaving definitions are defined inside aspects, thereby losing their reusability. The
work of Yang et al. [34] allows the definition of adaptation rules (i.e. weavings)
separately from the code, and the dynamic addition and removal of new code (i.e.
aspects) through the evaluation of such rules. However, these approaches (i) weave
aspects at the instance-level instead of at the type-level, and (ii) cannot change the
base code, they can only extend the base code with new behaviour.

Although there are also several software architecture works that address
adaptability at runtime, they are mainly focused on dynamic reconfiguration [3, 7].
Dashofy et al. [9] describe an infrastructure to build self-healing, architecture-based
software systems. Their approach consists of dynamically generating a repair plan in
order to repair the system. This repair plan is executed by a global Architecture
Evolution Manager (AEM). The AEM invokes the needed low-level evolution
services that are provided by the runtime infrastructure. The runtime infrastructure
performs the required changes in the whole system. The Rainbow Framework [4] also
describes an architecture-based approach to provide the self-adaptation of running
systems. The Architecture Layer is responsible for the adaptation process from the
moment a change requirement is detected until the change is executed. However,
these approaches use external and centralized adaptation mechanisms. These
mechanisms are appropriate for small to medium-size systems. However, large
systems need their adaptation to be managed in a decentralized way, i.e., each
subsystem must provide its own adaptation mechanisms. In this sense, Georgiadis et
al. [11] describe a decentralized infrastructure to support self-organization. However,
since each component instance stores a copy of the global architecture, the
infrastructure does not support scalability.

Hardly any of these approaches take into account the runtime internal adaptation of
components: the old running components are replaced by the new ones, thereby losing
their previous state. MARMOL [7, 8] is a formal, meta architectural model that
provides ADLs with Computational Reflection concepts [17]. The main idea is to
provide the system with an editable representation of itself. Thus, the changes made to
this representation are reflected to the running system. However, this work only
formalizes the required Reflection concepts but it does not describe the necessary
infrastructure to support these concepts. The ArchWare project [18, 21] provides a
prototype based on a formal language and offers a complete support for the dynamic

1 The base code is composed of the software units (modules, objects, components) of an

application, which have been obtained as a result of a functional decomposition.

www.manaraa.com

62 C. Costa, J. Pérez, and J.Á. Carsí

evolution of software architectures. Runtime adaptability is performed by the
Evolution Meta-Process Model [1]. Each ArchWare component is composed of a
production process (which provides the component behaviour), and an evolution
process. This evolution process evolves and controls the production process of the
component. ArchWare supports programmed evolution, by providing the
specification of the production process to the evolution process. It also supports ad-
hoc evolution by using hyper-code abstraction. However, there is no evidence about
how the ArchWare evolution process is able to evolve component types. All the
examples are always based at the instance-level.

There are approaches that provide dynamic evolution and also combine AOP and
software architectures. JAsCo [32] introduces the concept of connectors for the
weaving between the aspects and the base code, which permits a high level of aspect
reusability. In addition, it provides an expressive language that permits the definition
of relationships among aspects. However, due to the fact that aspects are woven in a
referential way, this proposal requires an execution platform to intercept the target
application and then insert the aspects at runtime. In a similar way, CAM/DAOP [27]
is a component-based software architecture approach that introduces aspects as
special connectors between components. It supports the separation of concerns from
the design to the implementation stages of the software life cycle. However, even
though it supports the dynamic weaving of aspects, it does not support the addition of
new aspect types at runtime.

Kephart [14] describes the Autonomic Computing (AC) vision, where software
systems are able to manage themselves, following a goal-driven approach. An
autonomic element is an entity that provides functions to monitor, analyze, plan and
execute control operations for a managed resource. AC is mainly focused on the IT-
management of resources, performance concerns and security concerns. The main
contribution of AC is that it establishes the need to build autonomous and
heterogeneous software systems to address the software complexity problem.

6 Conclusions and Further Work

This paper has presented a novel approach to support the runtime adaptability of
aspect-oriented components. This work takes the advantages of AOSD in software
architecture to benefit from its reuse and maintenance, which are fundamental
properties for developing complex systems. Dynamic adaptability is provided by
using computational reflection concepts, since they provide a natural way to define
self-modifying systems. In addition, this proposal describes the needed mechanisms
to modify both component types and component instances. Thanks to the evolution
infrastructure provided, running instances can trigger the modification of component
types, so that their running instances are self-adapted dynamically according to the
modifications required. Moreover, the self-adaptation process of component instances
is possible because it only affects those parts of the instance that are undergoing the
changes, thanks to the independence of PRISMA elements. The adaptation process
acquires major relevance when it is applied to non-synchronized, multi-threaded
components; for instance, two non-woven aspects of a PRISMA component are not
aware of changes in each other.

www.manaraa.com

 Dynamic Adaptation of Aspect-Oriented Components 63

This infrastructure provides the mechanisms needed to plan and execute
adaptations. Thus, as soon as a component type is asked to make an adaptation, both
the component type and its instances plan when the changes can be performed and
then execute them. However, in order to provide the complete functionality of self-
adaptable components, the mechanisms to monitor and analyze component
adaptations should be provided by the infrastructure. These two mechanisms are
future works that will be dealt with in the future. Some future works that we plan to
complete in the short term are the following: (i) to define constraints for component
type evolution; for example, it could be useful to limit the addition of new aspects or
to limit the deletion of specific ports; and (ii) to ensure that a component type can only
be dynamically evolved by authorized components (security). We are currently
working on the self-adaptability capabilities of component instances in order to
provide a complete framework for the self-adaptability of aspect-oriented software
architectures. In addition, it is important to note that the main adaptation services
described in this paper are additions and removals. However, from a runtime
perspective, replace operations should also be adressed.

Acknowledgements. This work is funded by the Department of Science and
Technology (Spain) under the National Program for Research, Development and
Innovation, META project TIN2006-15175-C05-01. This work is also supported by a
FPI fellowship from Conselleria d'Educació i Ciència (Generalitat Valenciana) to C.
Costa.

References

1. Balasubramaniam, D., Morrison, R., Kirby, G., et al.: A Software Architecture Approach
for Structuring Autonomic Systems. In: DEAS 2005. Proc. of Workshop on the Design
and Evolution of Autonomic Application Software, St. Louis, Missouri, pp. 1–7 (2005)

2. Braberman, V.: The SetPoint! project (2006), http://setpoint.codehaus.org
3. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A Survey of Self-Management in

Dynamic Software Architecture Specifications. In: WOSS’04. Proc. of 1st ACM
SIGSOFT Workshop on Self-Managed Systems, Newport Beach, California, pp. 28–33
(2004)

4. Cheng, S., Garlan, D., Schmerl, B.: Making Self-Adaptation an Engineering Reality. In:
Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A.P.A.,
van Steen, M. (eds.) Self-star Properties in Complex Information Systems. LNCS,
vol. 3460, pp. 158–173. Springer, Heidelberg (2005)

5. Chitchyan, R., Rashid, A., Sawyer, P., et al.: Report Synthesizing State-of-the-Art in
Aspect-Oriented Requirements Engineering, Architectures and Design. Technical Report
AOSD-Europe Deliverable D11, AOSD-Europe-ULANC-9. Lancaster Univ., UK (2005)

6. Cuesta, C.E., Romay, M.d.P., Fuente, P.d.l., Barrio-Solárzano, M.: Architectural aspects of
architectural aspects. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527,
pp. 247–262. Springer, Heidelberg (2005)

7. Cuesta, C.E.: Dynamic Software Architecture Based on Reflection. PhD Thesis,
Department of Computer Science, University of Valladolid (In Spanish) (2002)

8. Cuesta, C.E., Fuente, P.d.l., Barrio-Solárzano, M.: Dynamic Coordination Architecture
through the use of Reflection. In: Proc. of 2001 ACM Symposium on Applied Computing,
Las Vegas, Nevada, pp. 134–140 (2001)

www.manaraa.com

64 C. Costa, J. Pérez, and J.Á. Carsí

9. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards Architecture-Based Self-Healing
Systems. In: WOSS’02. Proc. of First Workshop on Self-Healing Systems, Charleston,
South Carolina, November 18-19, 2002, pp. 21–26 (2002)

10. D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: the
Catalysis Approach. Object Technology Series edn. Addison-Wesley, Reading (1998)

11. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for
Distributed Systems. In: WOSS’02. Proc. of First Workshop on Self-Healing Systems,
Charleston, South Carolina, November 18-19, 2002, pp. 33–38 (2002)

12. Greenfield, J., Short, K., Cook, S., et al.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks and Tools. Wiley, Chichester (2004)

13. Harrison, W.H., Ossher, H.L., Tarr, P.L.: Asymmetrically vs. Symmetrically Organized
Paradigms for Software Composition. Technical Report RC22685 (W0212-147), Thomas
J. Watson Research Center, IBM (2002)

14. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. In: Computer,
vol. 36(1), pp. 41–50. IEEE Computer Society Press, Los Alamitos (2003)

15. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., et al.: An overview of AspectJ. In:
Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353. Springer, Heidelberg
(2001)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., et al.: Aspect-Oriented
Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220–
242. Springer, Heidelberg (1997)

17. Maes, P.: Concepts and Experiments in Computational Reflection. In: SIGPLAN Not.,
vol. 22(12), pp. 147–155. ACM Press, New York (1987)

18. Morrison, R., Kirby, G., Balasubramaniam, D., Mickan, K., et al.: Support for Evolving
Software Architectures in the ArchWare ADL. In: WICSA’04. Proc. of 4th Working
IEEE/IFIP Conference on Software Architecture, Oslo, Norway, June 12-15, 2004, pp. 69–
78 (2004)

19. Object Management Group (OMG): Model Driven Architecture Guide (2003),
http://www.omg.org/docs/omg/03-06-01.pdf

20. Object Management Group (OMG): Meta-Object Facility (MOF) 1.4 Specification. TR
formal/2002-04-03 (2002), http://www.omg.org/technology/documents/formal/mof.htm

21. Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R., et al.: ArchWare: Architecting
evolvable software. In: Oquendo, F., Warboys, B.C., Morrison, R. (eds.) EWSA 2004.
LNCS, vol. 3047, pp. 257–271. Springer, Heidelberg (2004)

22. Pérez, J.: PRISMA: Aspect-Oriented Software Architectures. PhD Thesis, Department of
Information Systems and Computation, Polytechnic University of Valencia (2006)

23. Pérez, J., Ali, N., Carsí, J.A., Ramos, I.: Designing Software Architectures with an Aspect-
Oriented Architecture Description Language. In: Gorton, I., Heineman, G.T., Crnkovic, I.,
Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau, K. (eds.) CBSE 2006. LNCS,
vol. 4063, pp. 123–138. Springer, Heidelberg (2006)

24. Pérez, J., Ali, N., Carsí, J.A., Ramos, I.: Dynamic Evolution in Aspect-Oriented
Architectural Models. In: Morrison, R., Oquendo, F. (eds.) EWSA 2005. LNCS, vol. 3527,
pp. 59–76. Springer, Heidelberg (2005)

25. Pérez, J., Ali, N., Costa, C., Carsí, J.A., Ramos, I.: Executing Aspect-Oriented
Component-Based Software Architectures on. NET Technology. In: Proc. of 3rd
International Conference on. NET Technologies, Pilsen, Czech Republic, June 2005, pp.
97–108 (2005)

www.manaraa.com

 Dynamic Adaptation of Aspect-Oriented Components 65

26. Perry, D.E., Wolf, A.L.: Foundations for the Study of Software Architecture. ACM
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

27. Pinto, M., Fuentes, L., Troya, J.M.: A Dynamic Component and Aspect-Oriented Platform.
In: The Computer Journal, vol. 48(4), pp. 401–420. Oxford University Press, Oxford
(2005)

28. Rajan, H., Sullivan, K.: Eos: Instance-Level Aspects for Integrated System Design. In:
Proc. of 9th European Software Engineering Conference held jointly with 11th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, Helsinki,
Finland, September 2003, pp. 297–306. ACM Press, New York (2003)

29. Schult, W., Polze, A.: Speed Vs. Memory Usage-an Approach to Deal with Contrary
Aspects. In: Proc. of 2nd Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS), International Conference on Aspect-Oriented Software
Development (AOSD), Boston, Massachusetts (2003)

30. Shaw, M., Garlan, D.: Software Architecture: Perspectives On An Emerging Discipline.
Prentice-Hall, Englewood Cliffs (1996)

31. Smith, B.C.: Reflections and Semantics in a Procedural Language. PhD Thesis, Laboratory
for Computer Science, Massachusetts Institute of Technology (1982)

32. Suvée, D., Vanderperren, W., Jonckers, V.: JAsCo: An Aspect-Oriented Approach
Tailored for Component Based Software Development. In: AOSD. Proc. of 2nd
International Conference on Aspect-Oriented Software Development, Boston,
Massachusetts, pp. 21–29 (2003)

33. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. ACM
Press/Addison-Wesley Publishing Co., New York (1998)

34. Yang, Z., Cheng, B.H.C., Stirewalt, R.E.K., et al.: An Aspect-Oriented Approach to
Dynamic Adaptation. In: WOSS’02. Proc. of First Workshop on Self-Healing Systems,
Charleston, South Carolina, November 18-19, 2002, pp. 85–92 (2002)

www.manaraa.com

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 66–73, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Component Based Game Development –
A Solution to Escalating Costs and Expanding

Deadlines?

Eelke Folmer

Game Engineering Research Group
University of Nevada, Reno
89503 Reno, Nevada, USA
research@eelke.com

Abstract. Expanding deadlines and escalating costs have notoriously plagued
the game industry. Although the majority of the game development costs are
spent on art and animation, significant cost reductions and more importantly
reductions in development time can be achieved when developers use off the
shelf components rather than develop them from scratch. However, many game
developers struggle with component integration and managing the complexity
of their architectures. This paper gives an overview of developing games with
components, presents a reference architecture that outlines the relevant areas of
reuse and signifies some of the problems with developing components unique to
the domain of games.

Keywords: Games, COTS, Game architectures.

1 Introduction

Developing games is an expensive and risky activity. Computer games have evolved
significantly in scale and complexity since the first game –Pong— was developed in
the seventies [1]. Technological advances in console technology, e.g. advances in
processor speed, storage media, memory size and graphic cards have facilitated
increasingly complex game play and large quantities of realistic graphics. A natural
consequence of these advances is that the cost for game development has skyrocketed.
Estimates about the average costs for developing a console game range between 3 and
10 million dollar [2]. In addition development time and team size nearly doubled the
last decade [3]. An additional problem that developers have to face is the observation
that the games is predominantly hits driven; a UK demographics study revealed that
the top 99 titles (only 3.3% of development) account for 55% of all sales [3]. The
price of computer games, on the other hand, has stayed about the same over the last
10 years and has only slightly increased (from $50 to $60) for 3rd generation (Xbox
360 / Playstation 3) games.

As the game industry continues on a path towards longer development times and
larger budgets, developers need to find ways to either sell more games or reduce the
cost of building games. One way to reduce the cost of games is to reuse particular

www.manaraa.com

 Component Based Game Development 67

game components. Rather then reinventing the wheel when developing a 3d engine, a
physics engine or a network component, game developers can choose to use an
existing Commercial of the Shelf (COTS) Component. The primary motivation for an
organization to use COTS is that they will:

• Reduce overall system development costs and development time because the
components can be bought of the shelf instead of having to be developed from
scratch. Buying the component is usually cheaper as the development costs for the
component are being spread out over the multiple game titles in which the
component is incorporated.

• A higher quality of components is to be expected as one can assume that these
components are being used in different games, in different environments; more
rigidly testing and stressing the quality of the component than in a single game
setting.

• In addition a COTS based approach benefits the game industry as a whole as
successful COTS developers can focus on one particular aspect of a game e.g.
physics or 3d engines. This allows them to advance this technology at a faster rate
than when they were building games. These advances are then available for more
games to use [1], creating a win-win situation for everybody.

COTS development is not new trend in the games industry. In the past a
significant number of games have been built upon existing technologies.
Especially in the first person shooter (FPS) genre tech is heavily being reused. FPS
engines like the Doom™ engine by ID games and the Unreal™ engine by epic
games have spawned numerous successful games. However COTS have
predominantly focused on the 3d rendering engine technology and or well
understood sub domains such as audio and networking. Ten years ago only a
handful of commercial game engines were available and only a small number of
libraries for audio and networking. Because of the rapid evolution of games the
last decade, game developers now can choose from a plethora of components
dealing with various aspects of games e.g. rendering, object management, physics,
artificial intelligence and so on. Being able to choose from a multitude of
components (some of which are open source and hence free) is good for the game
development community as it will allow significant cost reductions and time to
market and will allow game developers to concentrate on the features of their game
rather than on generic features common to all games. However the success of
component based development as can be concluded from other domains such as
the web domain, will largely depend on how easy game developer can incorporate
such components in their games. In this paper we explore COTS based game
development and identify some of the issues that developers face when adopting
COTS based game development. The remainder of this paper is organized as
follows. In the next section, we present a reference architecture that allows us to
identify relevant areas for reuse. Section 3 discusses the relevant areas of reuse.
Section 4 discusses some of the problems that hamper component based game
development and discusses some research questions worth investigating. Section 5
concludes this paper.

www.manaraa.com

68 E. Folmer

2 A Reference Architecture for Games

Before we discuss the different components available to game developers we need to
provide a common vocabulary with which to discuss different game implementations
and commonalities between those game implementations. In order to understand
which parts of a game are specific and which are general we propose a reference
model that allows us to understand the separations and relations between the different
parts of a game design. The highest level abstraction of any software system is called
the software architecture i.e. the fundamental organization of a system, embodied in
its components, their relationships to each other and the environment, and the
principles governing its design and evolution [4]. The software architecture is an
important artifact in the development of any system as it allows early analysis of the
provided quality of a system such as performance, maintainability. This activity is
important as these qualities are to a certain extent restricted by its architecture design
and during architecture design one can still cost effectively change design decisions.
As a specific domain of software systems ages and matures, more and more systems
are developed from different organizations, and their functionality, structure, and
behavior become common knowledge e.g. abstractions or software architectures will
surface that represent their common denominator [5]. Such an abstraction is called
reference architecture, which in essence is a software architecture, at a higher level of
abstraction. A reference architecture does not contain any implementation details so it
can be used as a template solution for designing new systems. Another benefit of
having a reference architecture is that it can point out potential areas for reuse.

Game
interface

Domain
Specific

Infra
structure

Platform
software

Fig. 1. A reference architecture for the games domain

We derived a reference architecture (RA) from two published game architectures
[1, 6], an RTS system which has been published [7] of which we extracted an
architecture design and a number of unpublished/ undisclosed systems. Our reference

www.manaraa.com

 Component Based Game Development 69

architecture is inspired by the layered reference architecture for component-based
development as proposed in [8]. Their layered reference model consists of five layers;
the interface, application, domain, infrastructure and platform layer and it puts the
most specific components in the highest layer and the more general reusable
components in the lower layers. To create our reference architecture we looked at
different game architectures, we analyzed their components, and we then analyzed the
commonality of these components across different game architecture implementations
-and different game genres. Finally these components were organized according to the
layered architecture reference model proposed in [8]. We left out the application
specific layer form their model. This has resulted in the reference architecture
displayed in Figure 1. Our reference architecture consists of four layers:

• Game interface layer: the top layer in our reference architecture is comprised of
objects and components, which encapsulate the game logic. In this layer all the
game specific objects are found such as models and textures. The game user
interface, the game logic and a set of specific game objects (models, textures)
usually stored in a file system or database. The objects in the database are part of
this layer but the database functionality is provided by components from the
infrastructure layer. For reasons of simplicity we didn’t make this connection
explicit.

• Domain specific layer: This layer is comprised of components, which encapsulate
the interface to one, or more classes, which are specific to the domain of games.
Examples of such components are usually graphics, physics, network, sound etc.
These components are generally used from multiple places within the game.
Behavior of game objects such as determined by the AI or physics is usually
controlled by scripting languages such as lua or python that are part of the
infrastructure layer.

• Infrastructure layer: This layer is made up of bespoke components that are
potentially re-usable across any domain, providing general-purpose services such
as input/output, persistence, database management, scripting communication,
hardware abstraction etc.

• Platform software: this is comprised of standard or commonplace pieces of
software that are brought in to underpin the game.

The validity, accuracy and completeness of this RA are open for discussion. Our RA has
only been based on a limited number of available game architectures, which might not
represent an accurate cross section of all possible game architectures. The architectures
we derived this from did fit in this RA. Game companies tend not to disclose the
architectures of their games. Usually a RA also defines stakeholders, different views and
supported qualities and usually the RA is analyzed for its support of those qualities. In
this paper we merely outline the RA to sketch out commonalities between different game
architecture implementations and point out potential areas for reuse.

3 Areas of Reuse

As can be seen in our reference architecture six areas of reuse can be found in the
domain specific layer:

www.manaraa.com

70 E. Folmer

• Network - Focuses on the communication between games and servers.
• Graphics – A collection of subsystems all related to visualizing the game.

o Rendering - Provides basic 2 or 3 dimensional rendering
(producing pixels) functionality.

o Modeling - Focuses on abstract representations of game objects
and managing those objects e.g. scene graphs.

o Animation: functionality related to creating moving images.
o Texturing& effects: functionality related to applying textures

and light effects to particular models.
• GUI – Provides the functionality to build game interfaces.
• Artificial intelligence - Provides functionality related to produce the illusion of

intelligence in the behavior of non-player characters (NPCs), such as path
finding.

• Physics - Provides physics related functionality such as collision detecting e.g.
game objects should adhere to Newton's laws of dynamics.

• Sound – libraries for modifying / generating sounds playing mp3’s etc.

Usually a game engine provides a number of such components combined in one,

however game engines are usually designed for a particular game and might not be
suitable for what your game needs. Numerous third party components can be found
which provide a plethora of functionality. We don’t provide an overview in this paper
but a complete overview can be found on http://www.gamemiddleware.org. To
provide a complete picture another important area of reuse should be mentioned that
are not included in the reference architecture.

• Tools – Tools (such as exporters and importers between different graphic
applications) are not part of the game itself but are reused between games. The
tools side of game development is unique and important .The tools may require
twice the amount of code and are a huge detail given the number of content
producers teams have these days. Usually numerous content generation tools such
as 3D studio Max or Maja are used but developers often end up having to write
numerous plugins and converters to be able to port models/ graphics from such
tools to their game engines, which is quite cumbersome.

4 Problems with COTS Development

We identified the following problems possibly limiting the success of COTS.

4.1 Components Versus Frameworks

The success of component based development in the domain of games will depend on
how easy developers will be able to integrate existing components into their games.
Looking at other domains such as web-based systems, COTS were never as successful
as they were claimed to be. COTS were considered to be the “silver bullet” [9] of
software engineering during the nineties but the development with components came
with many not so obvious trade-offs; Overall cost and development time were

www.manaraa.com

 Component Based Game Development 71

reduced, but often at the expense of an increase in software component integration
work and a dependency on a third-party component vendors. As a result, COTS were
gradually absorbed into higher granularity building blocks, i.e. application
frameworks such as .NET or J2EE which don’t come with integration problems but
also do not offer much flexibility in the choice of components. A similar
argumentation holds for the game industry; game engines for FPS were among the
first reusable components. As the game industry matured more and more highly
specialized components became available for specific sub areas such as physics and
artificial intelligence. We are at a point now that if you want to build a game from
components a large number of components need to be integrated --which is not an
easy task. There seems to be a movement in the game industry towards developing
frameworks. The obvious tradeoffs that need to be made here is that building from
smaller pieces gives more control but using a large framework usually gives you the
tools and less hassle with integration. More research needs to be done to provide
developers with guidelines on how to successfully integrate components.

4.2 Complexity and Architecture Design

Another complicating factor is that games have increased in complexity, a 3d engine
10 years ago was an order of magnitude simpler to understand than it is nowadays.
One reason for this complexity might be because more and more components are
used. Since COTS developers try to design their component in such a way that it
might provide a best overall fit for a large number of games, it means that thick glue
layers may be needed to make up for the poor fit that the COTS provides for your
game. An example of a glue code is for example the code required to perform data
conversions between game components such as rendering or physics who require data
to be in a specific format [10]. Glue layers usually become a bottleneck when
performance is critical, as lots of data needs to be converted runtime. In addition
game architectures are overly complex and do not provide maintainability and
flexibility because of the spaghetti of dependencies that exist between COTS [1].
Components such as a renderer, physics, audio and artificial intelligence all need their
own local data management model (with varying degrees of detail) such as binary
spatial tree where the state of game objects is stored. When the state of a game object
changes in any of the models this needs to be updated in all the associated models,
leading to a synchronization and overhead between components. Another
complicating factor is the object centric view that most games adopt [5]; Games are
composed of game objects such as entities like cars, bullets, people representing real
life objects. Game objects are responsible for all their own data manipulation and
most COTS are just functional libraries that help the object do what its supposed to
do. With the increase in complexity of this functionality the COTS objects become
large and complex and unwieldy [1]. Current game architectures do not support
COTS development very well and possible alternatives such as data driven or black
board game architecture as proposed in [1] need to be further investigated with regard
to performance, scalability and the desired maintainability and flexibility for
component based game development.

www.manaraa.com

72 E. Folmer

4.3 The “emerging” Architecture

Usually game developers pick a game engine and write the necessary glue code to
incorporate the desired COTS. If we develop our game like this a software
architecture "emerges" rather than is designed upfront. An architecture consists of
components and connectors and usually some design rationale. An architecture is
mainly used as a tool to communicate design decisions to software engineers and it
highlights the system's conceptual properties using high level abstractions which
allows early analysis of quality requirements. In this model COTS can be used as
solutions which facilitate such a design. The danger with randomly assembling a
game using components is that the resulting architecture might not be the most
optimal given the games quality requirements. There are still some degrees of
freedom with regard to component composition that are often unexplored. Software
Connectors play a fundamental role in determining system qualities; e.g. the choice to
use shared variables, messages, buffers, calls or table entries has a big effect on the
qualities of the game such as performance, resources utilization and reliability.
Abstracting and encapsulating interaction details may help fulfill properties such as
scalability, flexibility and maintainability, which may help reduce the complexity of
game architecture designs. With regard to game design this area needs to be further
explored.

4.4 The Buy or Build Decision

Because incorporating COTS is difficult and game architecture are complex, deciding
which component to select to use in your game is a difficult decision. Especially for
game related components usually deep technical knowledge is required to understand
how to successfully use and integrate the COTS [10]. Game development
requirements are very volatile and change frequently as a result some game
developers end up rewriting most of the functionality that they need from the
component and they would have been better of building the component themselves in
the end. In order for a COTS to be successful it needs to be designed in such a way
that it facilitates many needs, so it can be used in many different games. But as it is
often impossible to fulfill everyone’s needs the COTS need to provide a most
common denominator of the required functionality that might not be the best fit for
what your game needs. It will take some time to understand the component yet there
is no guarantee the COTS will actually speed up the development if after a long
investigation the COTS proves to be a poor fit and so much functionality needs to be
rewritten that it was better to develop such a component from scratch and avoiding
things like ad hoc programming and design erosion. Guidelines for analyzing
components and strict interface agreements might mitigate some of this risk but need
to be further explored.

5 Conclusions and Future Research

Developing games with components has the potential to minimize development costs
and speed up development time. However, currently game developers struggle with a
number of problems such as how to successfully integrate the component in their

www.manaraa.com

 Component Based Game Development 73

game. Deciding whether the component provides what is required for the game.
Managing the complexity of their game architectures and analyzing whether the
architecture that results from component composition meets the required quality
requirements. Our future research will take a closer look at component composition
by doing a comparative study on the relative ease of integration for a number of open
source components for a Real time strategy game engine for AI research that is
currently being designed at the University of Nevada. These experiences will allow us
to develop a set of guidelines and or a game architecture that might facilitate
developing games with components.

References

1. Plummer, J.: A Flexible and Expandable Architecture for Electronic Games. Vol. Master
Thesis. Arizona State University, Phoenix (2004)

2. Grossman, A.: Postmortems from Game Developer. CMPBooks, San Francisco (2003)
3. DTI: From exuberant youth to sustainable maturity: competitive analysis of the UK games

software sector. (2002)
4. IEEE Architecture Working Group. Recommended practice for architectural description

IEEE (1998)
5. Avgeriou, P.: Describing, Instantiating and Evaluating a Reference Architecture: A Case

Study. Enterprise Architect Journal, Fawcette Technical Publications (2003)
6. Andrew Rollings, D.M.: Game Architecture and Design. Coriolis Technology Press,

Arizona (2000)
7. Michael Buro, T.F.: On the Development of a Free RTS Game Engine. GameOn’NA

Conference, Montreal (2005)
8. Mark Collins-Cope, H.M.: A reference architecture for component based development
9. Brooks, F.: The Mythical Man-Month; Essays on Software Engineering; Twentieth

Anniversary Edition. Addison-Wesley, Reading (1995)
10. Blow, J.: Game Development: Harder than you think. ACM Queue (2004)

www.manaraa.com

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 74–89, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Performance Assessment for e-Government Services: An
Experience Report

Yan Liu1, Liming Zhu1, and Ian Gorton2

1 National ICT Australia
2 Pacific Northwest National Laboratory

Jenny.liu@nicta.com.au, liming.zhu@nicta.com.au,
ian.gorton@pnl.gov

Abstract. The transformation and integration of government services, enabled
by the use of new technologies such as application servers and Web services, is
fundamental to reduce the cost of government and improving service outcomes
to citizens. Many core Government information systems comprise applications
running on legacy mainframes, databases and transaction processing monitors.
As Governments worldwide provide direct access over the Internet to these
legacy applications from the general public, they may be exposed to workloads
well above the origin design parameters of these back-end systems. This creates
a significant risk of high profile failures for Government agencies whose newly
integrated systems become overloaded. In this paper we describe how we
conducted a performance assessment of a business-critical, Internet-facing Web
services that integrated new and legacy systems from two Australian
Government agencies. We leveraged prototype tools from our own research
along with known techniques in performance modeling. We were able to clearly
demonstrate that the existing hardware and software would be adequate to
handle the predicted workload for the next financial year. We were also able to
do ‘what-if’ analysis and predict how the system can perform with alternative
strategies to scale the system. We conclude by summarizing the lessons learnt,
including the importance of architecture visibility, benchmarking data quality,
and measurement feasibility due to issues of outsourcing, privacy legislation
and cross-agency involvement.

Keywords: performance, e-Government, services, and J2EE.

1 Introduction

Government agencies worldwide are increasingly improving their service levels by
allowing the general public to access their systems over the Internet. These so-called
e-Government services save considerable cost and time by providing useful services
directly to the general public. They also greatly increase the flexibility and quality of
service provision in the eyes of the public.

Typical of large enterprises, Government IT infrastructures have grown over 30-40
years and comprise an ever-evolving, complex heterogeneous mix of new and legacy
systems and technologies. In addition, individual government agencies have generally

www.manaraa.com

 Performance Assessment for e-Government Services: An Experience Report 75

developed their applications in isolation, to address their own specific requirements.
This leads to stovepiped agency-based systems that are not designed to integrate with
other agencies and external systems [3].

To implement e-Government services, technologies such as application servers
supporting component-based development and Web services are used to provide new
facades to existing legacy backend systems. These legacy systems include mainframe-
based applications, databases and transaction processing monitors such as CICS
(Customer Information Control System), which have been designed for known
maximum user loads based on the number of internal agency operators and users.

However, applications on the Internet may attract concurrent user loads that greatly
exceed the numbers these legacy systems have been designed for. This situation
creates the risk of high-profile failures of key Government systems. An example of
this is the failure of the Australian Government’s new Customs systems in 2005
[1, 2]. This system brought the processing of goods at Australian ports to a standstill
for several days due to a lack of processing capacity in a legacy system.

In this paper we describe our experiences in working with two large Government
agencies to assess the performance potential of a new, high-profile e-Government
service. The service allowed Australian tax payers to retrieve their medical costs for a
given tax year directly from an Internet-based application used for lodging a tax
return. (In the rest of this paper, we refer to this service as Medical Tax Statement
Retrieval service (MTSR)). While the tax return lodgment application, e-Tax, had
been available for several years, it had never previously integrated with the medical
costs systems which resided in another government agency.

The implementation of this new service was extremely complex, requiring:

• The integration of eight major new and legacy applications across the two
agencies

• Passing requests and data between the different security domains used by
the two agencies

• Matching incompatible data formats across the two agencies due to different
database schemas, with no common unique keys due to privacy legislation

It was also known from previous usage profiles of the e-Tax that the request load
increased significantly on the day before the deadline for lodging tax returns. In 2006,
a peak workload of more than seven thousands requests per hour was expected on this
date (October 31st). This load was also expected to greatly increase in subsequent
years as online lodgment becomes more and more prevalent.

The two agencies were able to comprehensively test the various components of the
new service in isolation. Some component combinations within each agency could
also be easily integrated and tested. It was however prohibitively difficult within the
project time frame to perform a full end-to-end test to fully validate the maximum
request load that the MTSR service would be able to sustain.

To help mitigate this performance risk, we worked with the two agencies to build
an analytical model of MTSR and to populate the model’s parameter with values
obtained from performance testing. In the process, we adapted our model driven
capacity planning approach [7] to work around the many practical issues we
encountered. As a result, we were able to predict the maximum request load that the
MTSR service would be able to sustain. We also identified the key bottlenecks in the

www.manaraa.com

76 Y. Liu, L. Zhu, and I. Gorton

service implementation. The results of our work gave the agencies greatly increased
confidence that the implementation would be adequate for 2006 workloads, and gave
them a basis for planning enhancements to provide the necessary processing capacity
in future years.

2 Performance Prediction Pragmatics

To address this risk, we worked with teams from two Government agencies to build
an analytical model of the system so we could predict its performance and scalability.
The following describes the major issues we had to address.

2.1 Complexity of Service Architecture

The overall architecture of the MTSR system was not documented in detail, and was
in fact difficult to construct. The system integrates a number of new and legacy
systems across agencies, and includes:

• communications across secure inter-agency links,
• authentication systems at both ends,
• multiple firewalls,
• pass-through proxies,
• clusters of J2EE application servers,
• transaction processing servers
• database servers

It became a major exercise to bring together a group of 10 people from both
agencies to reconstruct an accurate architecture model of the Web service. It was also
difficult to get clarification on many issues so that we could confidently abstract away
non-performance significant details of the architecture in our model.

2.2 Complexity of the Web Service Scenarios

We needed to construct usage scenarios of the Web service so the behavior of each
component within the architecture could be understood. These scenarios are key to
modeling the Web service behavior. Their accuracy greatly affects the construction of
analytical performance models in terms of assumptions made and the techniques used
to model component behavior.

The MTSR system was originally designed to handle batch operations at specific
off peak times. These batches were accumulated from over-the-counter and over-the-
phone requests throughout a business day. Hence, workload patterns were well
understood and controlled. Introducing online access changed this completely,
creating a much more complex workload pattern distributed over 24/7 operations.

In addition, the batch operation allowed data mismatches, caused by input errors or
incorrect data to be resolved offline by an operator. With an online system, these
problems will be returned immediately to the user as a message indication the errors.
The user may attempt to correct the problem and resubmit the query. As this is a new
system, no frequency data was available before production commenced. However,
depending on the number of user resubmissions, the system will perform differently.

www.manaraa.com

 Performance Assessment for e-Government Services: An Experience Report 77

The Web service implementation also shares software and hardware resources with
a number of other core business services. Thus, in order to predict performance,
understanding the workload and background resource usage of these systems was
critical.

2.3 Compositional Performance Assessment

Each Government agency was able to comprehensively test the various components
of the new service in isolation. Some component combinations within each agency
could also be easily integrated and tested, and performance measurements for each
service component were available. It was however prohibitively difficult within the
project time frame to perform a full end-to-end test to fully validate the maximum
request load that the MTSR service would be able to sustain. This necessitates the
need for the performance assessment method to be applied at the integration level of
services in a compositional manner. A compositional performance assessment method
means in this context that the method can operate with different levels of abstraction
of the system description. This is because the integrated service was composed with
components and legacy applications that were designed, developed and maintained in
isolation.

2.4 Difficulties in Performance Measurement

In this complex production environment, obtaining relevant, accurate and detailed
performance measurements turned out to be extremely difficult. This had significant
impact on how we built the prediction model in terms of both making assumptions in
the model and populating model parameters. The challenges we faced in measurement
include the following.

• There are significant differences between the test environment and the production
systems. Performance measurements in the test environment did not capture a
number of significant factors in the production environment. For example, the Web
service shared resources with a number of other systems in the production
environment. Knowledge of the resource usage of these systems was very limited.
We therefore had to take this resource usage into account while working with the
test environment data.

• The granularity of the measurements available was very coarse. In most cases, only
an average value (e.g. response time) was provided rather than a distribution or
time-series based data. This was problematic as workload characterization relies on
fine-grained measurement of request profiles. This data was simply not available.

• Operation of some parts of the system is outsourced. This is common in IT
environments. Obtaining on-site performance data for these outsourced systems
was extremely difficult, as these actions did not fall within the agreed outsourcing
contract. Hence we had to proceed with estimated performance data obtained from
appropriate generic benchmarks.

• Due to the diversity of the integrated Web service test environment and the
different people and tools involved in collecting benchmark data, there were
significant discrepancies in measurement and estimation from different sources.
Even controlled performance tests presented some difficulties as, they were

www.manaraa.com

78 Y. Liu, L. Zhu, and I. Gorton

performed at different times under different conditions. Correlation between these
measurements was very hard, but is a crucial activity in prediction model building
and result interpretation.

We overcome some of these challenges through our approach, as described in the
next section. Other challenges can be only addressed by having better integration
between measurement and prediction as discussed in section 5.

3 Our Approach

We utilized the principles and techniques of our research on model driven capacity
planning [6-8]. This enabled us to construct and solve analytical performance models
in the context of an e-Government service environment.

Our previous research on capacity planning focused on a methodology for
performance prediction and evaluation of alternative architectural solutions of
component-based systems at the design level [5]. Performance models were built
from UML architecture design models with performance-related annotations. We also
built a prototype tool to automate benchmark generation from design artifacts, in
order to collect performance measurements for populating the model parameters.
These method and tools helped reduce the costs and effort in applying performance
engineering techniques in early stages of software development to evaluate
architectural alternatives.

Applying our techniques to the MTSR project required us to modify the approach,
as the Web service was already built using J2EE components and was about to enter
production. Our aims were to predict the maximum request load that the end-to-end
Web service would be able to sustain and identify any potential bottlenecks in the
architecture. So while the fundamental principles of performance modeling and
benchmarking could still be applied, there were problems, as described in the
previous section that exacerbated the project complexity. Hence we modified our
approach to address these explicitly, and we describe the steps taken in the following
sub-sections.

3.1 Defining the Project Goals

The first step of quantitative analysis entails obtaining an in-depth understanding of the
Web service under study. This includes understanding the business goals, the
architecture, the key usage scenarios and the workload patterns. To obtain the necessary
information, we acted as performance analysts and organized workshops and interviews
with various service stakeholders. These included the business managers, the Web
service architects, the development teams and the performance testers.

The performance goals were defined within the context of the major MTSR
scenario of retrieving a medical tax statement, namely:

• Undertake a performance assessment on whether the existing MTSR system would
be adequate to handle the predicted peak workload for the next tax year.

• Identify any architecture bottlenecks
• Develop guidelines for scaling the Web service in future years.

www.manaraa.com

 Performance Assessment for e-Government Services: An Experience Report 79

3.2 Understanding the Web Service Architecture

In the course of the workshops with the technical stakeholders, the software and
hardware components that execute the key scenario were identified. From these
discussions and working with the project documentation, we derived an initial
architecture model. We then presented the model to the stakeholders for feedback and
comments. Over three iterations, an architecture model was agreed, and a simplified
version of this is shown in Figure 1.

Internet

e-Tax end user
e-Tax services

e-Tax
local DB

DB2

Transaction processing

operator

ICON

Web services
(app. server cluster)

e-TaxEnd user

DBMS

DBMS

e-Tax
local DBe-Tax

local DB

Medical Tax Statement Retrieval service

Fig. 1. The MTSR architecture

Briefly, the Web service behaves as follows. A user request for medical costs
traverses the Internet and reaches the e-Tax server. e-Tax interprets the request and
delegates the processing to the MTSR system to retrieve medical cost records. The
request first passes over the dedicated private network, and after authentication, the
business method of a Web services hosted in the J2EE application server cluster is
invoked. The business logic attempts to validate the data in the request, and if valid,
invokes a mainframe transaction to retrieve the medical cost records and writes a log
record into a database.

3.3 Understanding the Web Service Workload

The MTSR application went into production on July 1st 2006. Application monitoring
was used to record the arrival of requests at the MTSR Web service to retrieve
medical cost records. So that we could analyze the workload, the performance
engineers aggregated 19 daily history logs for requests, as presented in Figure 2. The
24 lines each represent the requests in a given hour over the 19 day period.

The data shows a correlation between ‘load’ and ‘demand’, and requests increase
from the second week after the system was online. More requests occur on week days
rather than weekends. The peak workload each day occurs during evening hours from
6-10pm.

We observed that the maximum request arrival rate during the monitored period
was 356 requests between 8pm to 9pm on July 17th. This gives an average request
arrival rate of one request per 10.11 seconds. We refer to this as the inter-arrival time.

www.manaraa.com

80 Y. Liu, L. Zhu, and I. Gorton

Note that the requests received at the MTSR Web service do not come directly
from the e-Tax users sitting at their PC. The requests are actually issued by the e-Tax
server component. This will only process a fixed maximum number of requests
concurrently, as it uses a fixed thread pool to handle simultaneous requests. This
indicates that the execution of the MTSR Web Service forms a closed system from a
performance modeling perspective [3]. Therefore workload characterization
techniques such as the customer behavior graphic model [12] based on the assumption
that the system is open are not applicable in this case.

Based on this analysis, the workload can be modeled by two parameters, the
number of concurrent requests per second (N) and inter-arrival time (Tthink). Using
Little’s law [3], we can understand the relationship between arrival rate λ and average
response time R as

)(T
N

think R+=λ (1)

Request Distribution in Hour (01/07/2006-19/07/2006)

0

20

40

60

80

100
120

140

160

180

200

220

240

260

280

300

320

340
360

380

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Day

R
eq

u
es

ts

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Fig. 2. Request arrival history from the production system

The transaction of the MTRS system completes with either a MTS (Medical Tax
Statement) returned or only a message returned without a MTS. For example, a
successful request will pass through the whole MSTR architecture shown in Figure 1.
However, a request with errors of user input that causes a date of birth mismatch will
not call the transactions to retrieve the medical cost records and only a message
indicating the error is returned. Consequently, such a kind of requests have a directly
impact on the service time for processing a request, and their effect must be built in to
the performance model.

As a result of this analysis, we clustered the Web service workload into seven
classes. These were the successful transactions plus the six groups (see Figure 3),
based on their execution paths and the time spent executing the Web Service,
database and transaction processing operations. From a performance modeling
perspective, the individual classes impose a specific load on the software and
hardware components in the architecture, each with a different ratio of visits and
resulting service demands.

www.manaraa.com

 Performance Assessment for e-Government Services: An Experience Report 81

g

0

500

1000

1500

2000

2500

3000

3500

4000

30
/0

6/
20

06

1/
07

/2
00

6

2/
07

/2
00

6

3/
07

/2
00

6

4/
07

/2
00

6

5/
07

/2
00

6

6/
07

/2
00

6

7/
07

/2
00

6

8/
07

/2
00

6

9/
07

/2
00

6

10
/0

7/
20

06

11
/0

7/
20

06

12
/0

7/
20

06

13
/0

7/
20

06

14
/0

7/
20

06

15
/0

7/
20

06

16
/0

7/
20

06

17
/0

7/
20

06

18
/0

7/
20

06

Date

R
eq

u
es

ts

Transactions
return messages
without MTS

Transactions
return messages
with MTS

Fig. 3. Distribution of transactions

3.4 Constructing the Compositional Performance Model

In order to meet the need for a compositional approach to performance assessment,
we developed a performance model based on a Queueing Network Model (QNM),
which is a proven theory for modeling computer system performance [3] (chapter 8
and 9). In addition, a QNM can be constructed at different levels of abstraction,
namely system level and component level, to capture the fundamentals of
compositional reasoning techniques [9]. For example, at the system level, elements in
a model can be represented as black boxes with their performance behavior
characterized by input and output distributions, while at the component level, the
details of individual elements can be modeled, including their scheduling policy,
queue size and so on.

To create a performance model, the software and hardware components in the
MTSR architecture need to be mapped to performance model elements. The QNM
abstracts the layered architecture in Figure 1. We built the performance model (see
Figure 4) as follows:

• Concurrent requests from the e-Tax system are the direct work load on MTSR.
These are modeled as Delay Servers with the service time Tthink which equals the
inter-arrival time between sequential requests. The number of concurrent
requests is annotated as N.

www.manaraa.com

82 Y. Liu, L. Zhu, and I. Gorton

• The dedicated network between the e-Tax system and MTSR service is modeled
as Fast Ethernet whose service time depends on the size of packages of each
request and response that pass over the network.

• The MTSR Web service is implemented in Java and deployed in a cluster of
three COTS application servers. Load is balanced among the servers in the
cluster by a proxy, and we model its delay effect as a Delay Server.

• Each J2EE application server is modeled as a Load Independent Server. The
capacity of each server is identical. We assume the workload is evenly
distributed.

• The database servers are also clustered. We model the overall cluster as a Load
Independent Server. This simplification is mainly due to the performance
measurement issue. No accurate measurements of the service demand of
individual server were available.

• Similarly the transaction processing server is modeled as a Load Independent
Server.

The service time of the application servers, database servers and transaction
processing servers are all actually load dependent in nature. Here however we model
them as Load Independent Servers. This simplification is due to the fact that the
service times in the production system are measured under a certain workload (e.g.
the number of concurrent sessions), but there is no way for us to correlate the service
demand measured with the number of concurrent sessions at any given time.
Therefore it was impossible to obtain the service demand metrics under different
workloads, which is required for solving models with Load Dependent Servers. (This
simplification actually matches the service demands obtained by the performance
engineers who developed the MTSR service, which were an average value from their
regression analysis.)

As the MTSR system is deployed in a shared resource environment, other
applications are also running while MTSR is available during business hours from
9am to 5pm. The MTSR serivce performance engineers observed from history data
that these applications didn’t cause significant resource contention. Fortunately, our
performance assessment was more focused on periods with peak workload that
occurred in the evenings, so the performance impact of other shared resource
applications could be safely ignored. The same simplification was made for the batch
jobs that ran after 3am each day.

The model could be extended to model the effects of other applications
and batch jobs, simply by adding servers and queues into the QNM. However,
obtaining the parameters value to calibrate these extra performance
model elements would require significant engineering effort. In this project the
benefit of having a more comprehensive performance model were limited at this
stage.

www.manaraa.com

 Performance Assessment for e-Government Services: An Experience Report 83

Sessions from
ATO e-Tax

dedicated
network

Application Server Cluster

DB servers

m

Proxy

Mainframe transaction
processing

m

Fig. 4. The MTSR performance model

3.5 Obtain Parameter Values

Note that the performance model is actually built at a coarse grained level. A fine
grained performance model could more closely represent the behavior of the system.
However, performance modeling must take into account the issues involved in
obtaining parameter values. With the MTSR system we did not have access to the full
set of parameter values required for solving a more complex performance model.
Given these constraints, we simplified the model accordingly.

The critical parameter values required included the service demand and visit ratio
of each server in the QNM for every class of workload (characterized in section 4.3).
For the dedicated network, we also need to know the network latency and the
overhead of sending a byte of data. Other parameters include the average size of Web
Service request and response messages.

The performance parameters required to solve the performance models were
provided by MTSR performance engineers. The values were either measured from the
production system (e.g. the average service time for the Web Service in the J2EE
cluster), or calculated from logs. Some values were necessarily estimated by the
performance engineers and architects, for example the service time to insert a log
record into the database.

3.6 Analyzing the Results

We analyzed the predicted performance from the model in three ways, as explained
below.

3.6.1 Boundary-Based Performance Prediction
Equation (1) represents the relationship between the number of concurrent requests
per second (N) submitted from e-Tax sessions, the inter-arrival time (Tthink) and the
arrival rate . As discussed in section 4.3, N and T. As discussed in section 4.3, N and Tthink actually quantify the workload
submitted to the MTSR service and the contention for computing capacity, such as
CPU and disk usage. By changing the values of N and Tthink, we can simulate different
levels of workload submitted to MTSR service.

From the monitored performance data (Figure 2), the maximum request arrivals
were 356 requests within one hour. This gives an average inter-arrival time as 10.11
seconds. Using this data, we first set N = 1 and Tthink = 10 seconds, and solved the

www.manaraa.com

84 Y. Liu, L. Zhu, and I. Gorton

performance model. This gave the average response time for MTSR requests of
685ms. The actual measurements from the performance engineers showed the average
response time during the monitored period was 653ms. Hence the error of modeling
was within 5%, which was a highly satisfactory result. We presented this result to the
stakeholders and they were impressed with the accuracy of the prediction.

We next modified the value of N and Tthink to predict the service performance and
scalability under heavier workloads. We scaled N from 1 to 50 and set Tthink = 1 and
10 second to create different workloads. This simulated the scenario that in which the
e-Tax system needs to handle more than 10,000 online customer requests within one
hour, which was above the anticipated peak workload. (Note that N and Tthink are
estimated at this stage, as no actual production workloads of this intensity had been
experienced. However, these values can be obtained from on-going monitoring of the
production systems, and the real measure can be used by the performance engineers to
validate the predictions.)

0.09

0.47

0.93

1.83

2.69

3.09

3.46
3.79

4.07

0.09

0.46

0.86

1.21
1.50

1.75
1.97

2.16
2.33

2.48 2.61

2.27

1.38

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50 55

Number of concurrent requests

T
h

ro
u

g
h

p
u

t
(r

eq
u

es
ts

/s
ec

o
n

d
)

think time = 10s

think time = 1s

Fig. 5. Predicted throughput

Overall Average
Response Time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 5 10 15 20 25 30 35 40 45 50 55

Number of concurrent requests

P
re

d
ic

te
d

 R
es

p
o

n
se

 T
im

e

Transactions returned w ithout MTS

Transactions returned w ithout MTS

Transactions returned w ithout MTS

Transactions returned MTS

Overall Average Response Time

Fig. 6. Predicted response time (Tthink = 1s)

www.manaraa.com

 Performance Assessment for e-Government Services: An Experience Report 85

Overall Average
Response Time

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25 30 35 40 45 50 55

Number of concurrent requests

P
re

d
ic

te
d

 R
es

p
o

n
se

 T
im

e

Transactions returned w ithout MTS

Transactions returned w ithout MTS

Transactions returned w ithout MTS

Tx returned MTS

Overall Average Response Time

Fig. 7. Predicted response time (Tthink = 10s)

We solved the performance model and the summarized results are in Figure 5,
Figure 6 and Figure 7. Figure 5 shows the overall system throughput. Figure 6 and
Figure 7 show the response time of each class of request and the overall average
response time for Tthink = 1s and 10s respectively.

In Figure 5, the upper curve is with Tthink = 10s and lower curve is with Tthink = 1s.
These actually form the boundary of the throughput when the number of concurrent
requests scales from 1 to 50. We applied boundary analysis to estimate the arrival
rates of requests that the services can handle given the simulated workload. At the
point of N= 50 and Tthink = 1, from Figure 5 the throughput is 2.61 requests per
second. We can therefore predict that the systems can handle 2.61 * 3600,
approximately 9396 requests per hour with the average response time as
approximately 9 seconds as shown in Figure 6.

Similarly, we can predict that the system can handle approximately 4.07* 3600 =
14,652 requests per hour with the average response time approximately 2 seconds
when Tthink = 10s. Using this analysis we can further infer that if the measured arrival
rate of requests per second falls in the shaded area, we can roughly estimate that its
average response time is between 2 to 9 seconds.

We presented the results to the stakeholders, and their response was that the results
from the performance model were in line with current observations from the
production system. Hence this performance assessment provided them with increased
confidence that their architecture could handle the estimated peak workload of
approximately 7000 requests per hour.

3.6.2 Scaling Guidelines
There are generally two ways of scaling hardware resources, namely upgrading the
hardware with a more powerful configuration or adding another machine to share the
workload. Here we illustrate our analysis for the latter option.

Assuming an identical database server cluster is added to share the load, we can
extend the model with a Load Independent Server to represent the database server
cluster. Figure 8 shows the predicted throughput when scaling the database servers. It
clearly shows that the throughput increases for both workload scenarios of Tthink = 1s
and Tthink = 10s. However, the scaling is below a factor of 2. This is due to the fact that
adding a new database server cluster also introduces more contention at the transaction
processing servers, which prevents the throughput from scaling linearly.

www.manaraa.com

86 Y. Liu, L. Zhu, and I. Gorton

0.09

0.47

0.93

1.83

2.69

3.09

3.46

3.79

4.07

0.09

0.46

0.86

1.21

1.50
1.75

1.97
2.16

2.33
2.48

2.61

0.10

0.48

0.95

1.42

1.89

2.36

2.83

3.29

3.75

4.20

4.65

0.10

0.47

0.93

1.36

1.76

2.12

2.45

2.76

3.04

3.54

2.27

1.38

3.30

0

1

2

3

4

5

0 5 10 15 20 25 30 35 40 45 50 55
Number of concurrent requests

T
h

ro
u

g
h

p
u

t
(r

eq
ue

st
s/

se
co

nd
)

think time = 10s

think time = 1s

think time = 10s (scale)

think time = 1s (scale)

Fig. 8. Throughput of scaling database servers

4 Lesson Learnt

Conducting this project has given us considerable insights in to various facets of
capacity planning for cross-agency e-Government services. The following discusses
these insights. They are organized into two categories, namely prediction and
measurement.

4.1 Prediction

1) Limited model validation opportunities
Due to the limited duration of this project, the performance model only was validated
by data measured during a specific period of time. Monitoring data, calibrating the
model, predicting performance and validating predictions are iterative tasks. The
more data collected, the more opportunities to validate and refine the model accuracy.
However, this also requires more engineering effort and project management. Hence
there is a trade-off between the cost and accuracy of the performance modeling
process.

2) Work with coarse-grained data
The granularity of measurements used for workload characterization was hourly
based. Finer grained minute or second resolution data would’ve provided a more
accurate snapshot of the system’s behavior. On the other hand, having fine grained
data monitoring and collection will incur extra monitoring overheads at runtime and
demands additional engineering effort.

www.manaraa.com

 Performance Assessment for e-Government Services: An Experience Report 87

3) Work with incomplete measurement data
Some parameter values were estimated by performance engineers, for example the
service time of a database server to insert a log record. This was simply because there
was no easy way to obtain this data within the project timeframe. This may reduce the
accuracy of the predictions if the estimates are incorrect, and consequently these
estimated values need to be closely scrutinized.

4) Work with limited architecture visibility
Modeling a complex system, requires abstraction in the model to make the project
tractable. An overly detailed model of the systems may create complex modeling
issues that are hard to solve, and an overly abstract model may miss important
performance characteristics. In this project, we only modeled the software servers as
queueing network components, and did not consider details of the internal server
behavior. This black box approach is appropriate for simplifying modeling, and from
our experience on this project, still captures the performance characteristics of the
overall system.

4.2 Measurement

1) A flexible test data generation tool is required
Due to privacy legislation in the government, gaining full access to any real data for
measurement is prohibited, even for the agency software engineers. Using generated
test data is therefore the only option. To represent the system as realistically as
possible and reduce testing effort, we need flexible test data modeling and generation
tools to produce high quality data for a large number of requests types and their
combinations. The existing performance tools used in the agencies have scripting and
test recording features, but they lack the test data modeling capabilities and are
extremely limited in features for test data generation. We were able to use our
MDABench prototype in the measurement planning phase. We created test data
models along with transaction mix requirements using the UML 2.0 Testing profile.
We then used the model to communicate the essential measurements to the MTSR
software engineers. However, deploying MDABench directly to the environment
would be more efficient.

2) A high degree of measurement and prediction integration is required
The most time consuming activity in the project was dealing with the heterogeneous
computing environment and data collection tools for acquiring the necessary
measurements to populate parameters in the prediction model. Having the ability to
directly integrate measurement data with constructing the performance model would
greatly streamline the capacity planning process. Most of the existing tools on the
market focus either on measurement or prediction, making the whole process more
complex.

3) A distributed unified measurement utility is required
The complexity of the Web service architecture and test environment created
difficulties in data measurement. Most measurements were performed at different
times, under different runtime conditions and using different tools. Correlating

www.manaraa.com

88 Y. Liu, L. Zhu, and I. Gorton

between these measurements hence became very difficult. A unified measurement
utility that can collect all necessary measurements at the same time would
significantly increase the usability of the collected data.

4) Time series data is essential for interpreting results
The ability to correlate analysis with external stimulus is important for predicting
potential problems. However, most of the performance data we had were averages
with a coarse granularity. Distribution and time series based graphs were not available
until much later in the project. When we later acquired time series based data, it
turned out to be very useful in interpreting the results.

5 Conclusion and Future Work

The performance evaluation results were produced seven weeks before the anticipated
peak workload occurs at the time close to the deadline of online e-Tax lodgment. It
was later verified that the results from the performance evaluation were in line with
observations from the production system. This demonstrates that the performance
evaluation results are an independent source of information that corroborate the initial
MTSR performance evaluation conducted by the two Government agencies
individually. This increases confidence in business planning for future service uses.

The MTSR project has provided us with considerable insights in to the issues of
applying performance prediction techniques to large, complex heterogeneous systems.
We are encouraged by the fact that we were able to use, with appropriate
modifications, some of the techniques and tools developed in our research. This
experience will be valuable in guiding our future research efforts towards solution for
some of the problems we encountered.

Acknowledgement

National ICT Australia is funded through the Australian Government's Backing
Australia's Ability initiative, in part through the Australian Research Council.

References

[1] Almes, G.T., Lazowska, E.D.: The behavior of Ethernet-like computer communications
networks. In: SOSP ’79. Proceedings of the 7th ACM Symposium on Operating Systems
Principles, pp. 66–81. ACM Press, New York (1979)

[2] Bushell, S.: Customs Failure A Catastrophe of IT Governance, http://www.cio.com.au/
index.php/id;723894471;fp;4;fpid;21

[3] Menascé, D.A., Almeida, V.: Capacity Planning for Web Services: metrics, models, and
methods. Prentice Hall, Englewood Cliffs (2001)

[4] Hohpe, G., Woof, B.: Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions. Addison-Wesley, Reading

[5] Liu, Y., Fekete, A., Gorton, I.: Design-Level Performance Prediction of Component-
Based Applications. IEEE Transactions on Software Engineering 31(11), 928–941 (2005)

www.manaraa.com

 Performance Assessment for e-Government Services: An Experience Report 89

[6] Zhu, L., Gorton, I., Liu, J., Bui, N.B.: Model Driven Benchmark Generation for Web
Services. In: IW-SOSE ’06. Proceedings of the 2006 International Workshop on Service
Oriented Software Engineering (2006)

[7] Zhu, L., Liu, J., Gorton, I., Bui, N.B.: Customized Benchmark Generation Using MDA.
In: Proceedings of the 5th Working IEEE /IFIP Conference on Software Architecture,
IEEE Computer Society Press, Los Alamitos (2005)

[8] Management-Advisor-Committee, Connecting Government - Whole of Government
Reponses to Australia’s Prioirty Challenges. I. T. a. t. A. Department of Communications
(2004)

[9] Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Packaging Predictable Assembly with
Prediction-Enabled Component Technology. (CMU/SEI-2001-TR-024)

[10] Davidson, P.: Australia Customs - More Flak Than Facts? In: Information Age (2006)
[11] Hayes, S.: Customs Knew System Would not Compute. In: ITM News (2005)
[12] Almeida, V., Menascé, D.A.: Capacity Planning: an Essential Tool for Managing Web

Services. IEEE IT Professional, July/August 2002, pp. 33–38. IEEE Computer Society
Press, Los Alamitos (2002)

www.manaraa.com

An Approach for QoS Contract Negotiation in

Distributed Component-Based Software

Mesfin Mulugeta and Alexander Schill

Institute for System Architecture
Dresden University of Technology, Germany
{mulugeta,schill}@rn.inf.tu-dresden.de

Abstract. QoS contract negotiation enables the selection of appropriate
concrete QoS contracts between collaborating components. The negoti-
ation is particularly challenging when component’s QoS contracts de-
pend on runtime resources or quality attributes to be fixed dynamically.
This paper proposes a QoS contract negotiation approach by modeling
it as a constraint solving problem. Important to our approach is the
classification of the negotiation in multiple phases - coarse-grained and
fine-grained, which are concerned with the negotiation of coarse-grained
and fine-grained component properties respectively. We present negoti-
ation algorithms first in a single-client - single-server scenario and later
generalize it to a multiple-clients scenario. The contract negotiation is
illustrated using an example from a video streaming scenario.

1 Introduction

Component-Based Software Engineering (CBSE) allows the composition of com-
plex systems and applications out of well defined parts (components). In today’s
mature component models (e.g. EJB and .NET), components are specified with
syntactic contracts that provide information about which methods are available
and limited non-functional attributes like transaction properties. This under-
specifies the components and limits their suitability and reuse to a specific area
of application and environment. In [3], component contracts have been identi-
fied in four different levels: syntactic, behavioral, synchronization, and QoS. The
explicit consideration of component QoS contracts aims at simplifying the de-
velopment of component-based software with non-functional requirements like
QoS, but it is also a challenging task.

For applications where the consideration of non-functional properties (NFPs)
is essential (e.g. Video-on-Demand), a component-based solution demands the
appropriate composition of the QoS contracts specified at the different ports of
the collaborating components. The ports must be properly connected so that
the QoS level required by one must be matched by the QoS level provided by
the other. When QoS contracts are known statically, the developer or assem-
bler can select the right concrete (provided and required) QoS contracts of each
component and compose the whole application during design, implementation,
or deployment time. But, for composing QoS contracts that depend on runtime

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 90–106, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

An Approach for QoS Contract Negotiation 91

resources (e.g. network bandwidth, CPU time) or quality attributes fixed dynam-
ically, and for loose coupling between components, the selection of appropriate
QoS contracts must be carried out at runtime by the process of QoS Contract
Negotiation. In our approach, the component containers perform the contract
negotiation at runtime. In this paper, we present QoS contract negotiation al-
gorithms first in a single-client - single-server scenario and later generalize it to
a multiple-clients scenario both in an environment where there may be resource
constraints at the client, server, and the network.

A component’s QoS contract is distinguished into offered QoS contract and
required QoS contract [10]. We use CQML+ [12][7], an extension of CQML [1], to
specify the offered- and required-QoS contract of a component. CQML+ uses the
QoS-Profile construct to specify the NFPs (provided and required QoS contracts)
of a component in terms of what a component requires (through a uses clause)
from other components and what it provides (through a provides clause) to other
interacting components, and the resource demand by the component from the
underlying platform (through a resource clause). Due to its dynamic nature,
QoS contract is specified with multiple QoS-Profiles as illustrated in Section 5.

The rest of the paper is organized as follows. Section 2 details the modeling
of QoS contract negotiation as a constraint solving problem. In Section 3 we
explain the need for coarse-grained and fine-grained negotiations and propose
heuristic algorithms for these negotiation types in a single-client - single-server
setting. Section 4 is devoted to discussions for a multiple-clients scenario. In
Section 5, we illustrate the presented ideas based on an example scenario. The
paper closes with an examination of related work, a summary, and outlook to
future work.

2 Problem Formalization

The QoS contract negotiation can be formulated as a constraint satisfaction
problem (CSP) as follows. A CSP consists of variables whose values are taken
from finite, discrete domains, and a set of constraints on their values. The task is
to assign a value to each variable satisfying all the constraints [14]. We take the
variables to be the QoS-Profiles of the collaborating components (Fig. 1). The
domain of each variable is the set of all QoS-Profiles specified for a component.
The constraints are classified as conformance, user’s and resource.

The conformance constraint is defined for two connected components (e.g.
C1 and C2 in Fig. 1). Conformance [5] exists between two QoS-Profiles of in-
teracting components when the server’s provided-QoS contract conforms to the
client’s required-QoS contract. For example, the constraint delay < 5 conforms
to the constraint delay < 10. The user’s constraint is specified between a front-
end component’s provided QoS contract and the user’s QoS requirement. The
resource constraint is specified for three groups: components deployed on the
client, on the server, and for those connected across containers (Fig. 1). For
instance, the resource demand of profiles of components deployed in the client
container must not be greater than the available resource in the client node. The

www.manaraa.com

92 M. Mulugeta and A. Schill

Fig. 1. Components deployed in a client and server container to provide a service to
the user

influence of the network must be incorporated in the conformance constraint for
those components connected across containers. For example, we assume delay in
the network to be a constant for the period the negotiation agreement is valid.

Several solutions may satisfy all the constraints in a CSP. In a QoS contract
negotiation, it is required to select a good solution according to some goal (e.g.
user’s satisfaction). To address this issue, a Constraint Satisfaction Optimization
Problem (CSOP) framework [14] would be helpful. A CSOP is defined as a CSP
together with an optimization (or objective) function f that maps every solution
to a numerical value. The task in a CSOP is to find the solution with the optimal
(minimal or maximal) value with regard to the objective function f.

As an objective function, f, we use a utility function. A utility [8] represents
varying satisfaction with QoS changes of an application. It is represented by
mapping quality points to real numbers in the range [0, 1] where 0 represents
the lowest and 1 the highest quality. We refer to A as a ”better” solution when
compared to another solution B if A’s utility is higher than that of B. The suc-
cessive improvement on a ”better” solution would ultimately lead to an optimal
solution, which is a solution that gives the highest utility.

Fig. 1 depicts a single-client - single-server scenario. There are more general
scenarios of the problem like the case with (i) multiple-clients, (ii) multi-tier
(multiple servers), and (iii) peer-to-peer. In this paper we discuss the single-
client and multiple-clients scenarios.

3 Single-Client - Single-Server Scenario

While investigating QoS contract negotiation in various componentized applica-
tion scenarios, we realize that the negotiation process is complex and less efficient
unless phasing is applied. The complexity arises from the dependency exhibited
by component properties and from the different nature of some properties. For
instance, compression algorithms affect the QoS contract of components because

www.manaraa.com

An Approach for QoS Contract Negotiation 93

of resource trading. Moreover, separating protocol negotiation between compo-
nents and between multiple containers simplifies the negotiation process. Based
on this phasing, we classify properties of a component as coarse-grained and
fine-grained.

A coarse-grained property is a component implementation’s property that
can be associated with one or multiple fine-grained properties. This association
is created by the fact that for a certain value of the coarse-grained property
the fine-grained properties can possibly take different values depending on the
allocated resources. As an example, in a video streaming scenario, coding type
and protocol can be categorized as coarse-grained properties while frame rate
and resolution as fine-grained properties. Moreover, a security goal specified for
a component’s interface represents a coarse-grained property while associated
security mechanisms are fine-grained properties. Coarse-grained negotiation is
the negotiation on coarse-grained properties while fine-grained negotiation is the
one on fine-grained properties. A dependency exists between the two negotiation
types in that the negotiation on fine-grained properties should be performed
if there is an agreement on the associated coarse-grained property. A detailed
discussion of these negotiation types is given next.

3.1 Coarse-Grained Negotiation

A coarse-grained property is generally assumed to be specified with multiple
values, which are ordered. Ordering is followed to associate a preference with
the various values. In our video streaming application scenario, video coding
type is taken as a coarse-grained property for the interacting components. A
VideoPlayer component’s coding type property may be specified as: h264 (most
preferred) and h263 (least preferred) while the specification for VideoServer
may be h263 (most preferred) and MPEG (least preferred). For two interact-
ing components, the list and preference of values specified for a certain coarse-
grained property might not match. In our present strategy, we first consider the
client’s preference and give priority to it.

Coarse-grained negotiation is successful when offer and expectation of the
interacting components conform on the concerned property. In general, a con-
formance relationship is defined for each property to test whether the values
of the corresponding properties match to each other. Algorithm 1 outlines the
steps to be executed in the coarse-grained negotiation between a client and server
component. The algorithm must be applied for each coarse-grained property in-
dividually. The input to Algorithm 1 is a property’s specification for a client and
server component while the output is the agreed value(s) of a property stored in
coarseAgreementList.

After executing Algorithm 1, coarseAgreementList may: (i) be empty - the
whole negotiation process terminates with no agreement; or (ii) have a single
value - final decision has been reached on the property’s value at this phase; or
(iii) have multiple values - final decision on the property’s value will have to be
postponed until after the fine-grained negotiation.

www.manaraa.com

94 M. Mulugeta and A. Schill

Algorithm 1. Coarse-grained negotiation algorithm between a client and server com-

ponent

/∗ N i s the t o t a l number of va lues s p e c i f i e d for the coarse−grained
property in the c l i e n t component ∗/

L i s t coarseAgreementList ;

void CoarseGrainedNegot iat ion ()
{

I n i t i a l i z e coarseAgreementList to empty ;
for (int i = 1 ; i <= N; i++) {

Take the i−th p r e f e r en c e o f the c l i e n t component ;
i f (the re e x i s t s a conformant value s p e c i f i e d for the s e r v e r component)

Store the value in to coarseAgreementList ;
}

}

3.2 Fine-Grained Negotiation

Fine-grained negotiation is the second and last phase of the contract negotiation
process performed on the fine-grained properties such as frame rate, resolution,
delay, and security mechanisms corresponding to the agreed values of the coarse-
grained properties in the first phase of the negotiation. It is responsible for
finding a ”better” solution in addition to just picking a solution that satisfies all
the constraints. A CSOP framework would be helpful to accomplish this task
as explained in Section 2. We use a branch and bound (B&B) [14] technique to
tackle the problem modeled as a CSOP.

B&B is a very general framework. To completely specify how a process that
applies B&B proceeds, we need to define policies concerning selection of the next
variable and selection of the next value. We must also specify the objective and
heuristic functions. The heuristic function, h, maps every partial labeling (assign-
ment) to a numerical value and this value is used to decide whether extending
a partial labeling to include a new label would result in a ”better” solution.
We propose below a B&B technique for the fine-grained negotiation by explain-
ing the schemes we used to define: (i) variable and value selection policies, (ii)
objective function, f, and (iii) heuristic function, h.

A variable and value ordering is a general purpose heuristics used to solve
CSPs efficiently [14]. In this method, the variable to assign next is appropriately
selected. After choosing the variable for assignment, the value to assign to must
also be appropriately picked out. In our case, the variables (QoS-profiles) are
ordered for assignment by topologically sorting the network of cooperating com-
ponents. By such ordering, the front-end component (e.g. C1 in Fig. 1) becomes
the minimal element. The assignment starts from the minimal element and from
there continues to the connected components, and so on. We assume that the
cooperating components form only a tree. The possible values of each variable,
i.e. the QoS-profiles specified for each component, must be ordered from lower to
higher quality. As contracts might involve multiple QoS properties, the ordering
is based on the user’s relative preference toward each QoS property.

www.manaraa.com

An Approach for QoS Contract Negotiation 95

Algorithm 2. Fine-grained negotiation algorithm for components deployed in client

and server containers

List<QoSProf i l es> s e l e c t edQoSPro f i l e s ;
enum CG { On Client , On Server , Across Conta iner s } // component ’ s group

boolean FineGrainedNegot iat ion ()
5 {

i f (ConformanceCheck () == fa l se) return fa l se ;
I n i t i a l i z e s e l e c t edQoSPro f i l e s to Empty ;
I n i t i a l i z e BOUND to use r s QoS requirement ;
for (int i =0; i<components [0] . p r o f i l e s . s i z e () ; i++) {

10 i f ((provided QoS cont rac t o f the i t h p r o f i l e o f Components [0])>=BOUND){
i f (F indAppropr i a t ePro f i l e s ()) {

update s e l e c t edQoSPro f i l e s with the newly s e l e c t e d QoS−P r o f i l e s ;
update BOUND with the newly computed BOUND;

}
15 else break ; // t h i s i s a termination condi t ion

}
}
i f (s e l e c t edQoSPro f i l e s i s Empty) return fa l se else return true ;

}
20 int FindAppropr i a t ePro f i l e s ()

{
FindConformantProf i l es (CG. On Client) ;
i f (CheckResourceConstraints (CG. On Client)) {

FindConformantProf i l es (CG. Across Conta iner s \CG. On Client) ;
25 i f (CheckResourceConstraints (CG. Across Conta iner s)) {

FindConformantProf i l es (CG. On Server\CG. Across Conta iner s) ;
i f (CheckResourceConstraints (CG. On Server))

return 1 ; // success
else return 0 ;

30 } else return 0 ;
} else return 0 ;

}

The objective function, f, is taken as the utility function. There are two utility
values that we should differentiate: application utility and system utility [8].
Application utility represents the quality of the provided service as perceived
by a user while system utility is defined for the overall system, with multiple
applications or clients. As applications can involve multiple QoS-dimensions,
the utility function of an application is defined as a weighted average of the
dimension-wise utility values. The weights define the relative importance of each
QoS-dimension.

To define the heuristic function, h, we make use of the fact that at any point
during the assignment of values to variables, the QoS property of the partially
completed solution can be taken as the provided-QoS contract of the front-end
component. Hence, h can be calculated based on the utility function by taking
the QoS points in the provided-QoS contract of the front-end component. Be-
cause of the ordering strategy of variables we followed, h needs to be computed
only at the beginning of each iteration, that is, when the front-end component
is assigned a new value. If the new assignment to the front-end component vi-
olates the user’s constraint, the choice is retracted and the sub-tree under the
particular assignment will be pruned. The process will then re-start with a new
assignment.

www.manaraa.com

96 M. Mulugeta and A. Schill

Since the components are distributed in a client and server containers, one
approach to follow in the algorithm would be to first find QoS-Profiles of com-
ponents deployed in the client container, which satisfy the three constraints and
at the same time give a ”better” solution. The same procedure is then applied
to components connected across containers and lastly to components deployed
in the server container. Such an approach would lead to more backtracking if
the bottleneck resource were either the network bandwidth or server resources.
To avoid this drawback, the algorithm finds conformant profiles for components
deployed in both containers iteratively from low to high quality - in search of a
”better” solution. At each iteration the resource constraints are checked at three
instances: for components deployed in the client container, connected across
containers, and deployed in the server container. When a bottleneck resource is
found, the algorithm stops.

We will next give the algorithm together with some descriptions. The inputs
to Algorithm 2 are: (i) the QoS-Profiles of each component that are ordered from
low to high quality. The collaborating components are also ordered as explained
previously; (ii) User’s QoS requirements; and (iii) available resources at the client
and server nodes and the end-to-end bandwidth. The output of Algorithm 2 is
a QoS-Profile for each component that satisfies the user’s, conformance, and
resource constraints. In addition to fulfilling all the constraints, the solution
obtained gives at least the utility that is required by the user. The following is
a short description of the variables and functions used in Algorithm 2.

– selectedQoSProfiles (Lines 1, 7, 12, 18) is a list data structure that stores
the QoS-Profiles of all components, which fulfill all the constraints. If the list
is empty after the execution of the algorithm, then there exists no solution
that satisfies all the three constraints, which is an over-constrained situation.

– CG.On Client, CG.On Server, and CG.Across Containers (Lines 2, 22-27)
refer to components on the client, on the server, and connected across con-
tainers respectively (Fig. 1).

– ConformanceCheck() (Line 6) performs conformance consistency check to
every connected pair of components. It returns false if there cannot be con-
formance between at least two connected components.

– BOUND (Lines 8, 10, 13) is initialized to the user’s QoS requirement as the
algorithm aims at finding a solution that meets the requirement or even a
better one. In Line 10, provided QoS contract of the front-end component is
taken as the value of the heuristic function, h.

– components[0] (Lines 9, 10) refers to the front-end component. In Line 9,
components[0].profiles.size() denotes the total number of QoS-Profiles
specified for components[0]. The list data structure profiles, which is
contained within each component, stores the specified QoS-Profiles.

– FindConformantProfiles() (Lines 22, 24, 26) finds QoS-profiles, which are
conformant to one another for all the components specified in the input
argument. At each iteration this function improves the solution by one step
based on the specified QoS-profiles.

– CheckResourceConstraint() (Lines 23, 25, 27) returns true when there are
enough resources for the current selection.

www.manaraa.com

An Approach for QoS Contract Negotiation 97

A component may belong to two groups in CG (Line 2). For example, a compo-
nent deployed on the client container and that also communicates across contain-
ers belongs to On Client and Across Containers. The notation \ in Algorithm 2
is read as ”less”.

As explained earlier, the whole negotiation is performed in two phases: coarse-
grained and fine-grained. The following algorithm combines these two phases.

Algorithm 3. Negotiation algorithm for components deployed in client and server

containers

void Negot ia t ion ()
{

CoarseGrainedNegot iat ion () ; // Algorithm 1
i f (the re i s agreement on the value o f the coarse−gra ined property) {

for (each agreed value in the coarse−gra ined nego t i a t i on) {
FineGrainedNegot iat ion () ; // Algorithm 2

}
Compare the u t i l i t y o f the s o l u t i o n s obtained and choose
the one that g i v e s the h ighe s t u t i l i t y ;

}
}

3.3 Algorithm Termination and Complexity

FineGrainedNegotiation() in Algorithm 2 iteratively searches for a ”better”
solution. At each iteration, the conformance checking between two connected
components (Ci, Cj) where Ci is the parent1 of Cj is performed as follows. Start-
ing from (C1, C2) where C1 is the front-end component, a new QoS-Profile is
chosen for C1 at the beginning of the iteration each time selecting a QoS-Profile
with a better quality (Lines 9-10). Not all of C2’s profiles have to be checked
for conformance with the chosen profile of C1. The checking begins from the
profile of C2 selected in the previous iteration and moving to higher index of the
array of profiles (from lower to higher quality). For (Ci, Cj), a profile for Cj is
chosen using a similar procedure provided that a profile for Ci has been selected
in the previous steps. The termination of the algorithm is guaranteed because
of the fact that the network of components constitutes a tree and the number of
QoS-Profiles of each component is finite.

ConformanceCheck()(Line 6) in Algorithm 2 performs a conformance con-
sistency check to connected components: (Ci, Cj) where Ci is the parent of
Cj . This consistency checking runs from j = n down to 2 for the compo-
nents C1, C2, ..., Cn. This step removes QoS-profiles from the domain of Ci

for which no conformant profiles have been specified in Cj . The purpose of
ConformanceCheck() is to achieve node- and arc-consistency in terms of the
user’s and conformance constraints and thus enables the remaining part of the
algorithm to run with no backtracking. It has been proved that a search in a
binary CSP is backtrack-free if the constraint graph of a problem forms a tree
and both node- and arc-consistency are achieved in the problem [4]. Note that

1 Ci’s uses interface is connected to Cj ’s provides interface.

www.manaraa.com

98 M. Mulugeta and A. Schill

Table 1. QoS levels in a premium and normal service class

in the algorithm design, we assumed the collaborating components form a tree.
Assuming the total number of components is n and the number of QoS-Profiles
specified for each component is d, the complexity of ConformanceCheck() is
O(nd2). The complexity of finding a solution in FineGrainedNegotiation() is
O(nd2+nd2) = O(nd2). The solution obtained has the highest utility concerning
the most preferred QoS-dimension.

4 Multiple-Clients Scenario

The multiple-clients scenario poses new challenges that haven’t existed in our
single-client scenario. Some of these are: (i) new clients constantly send requests
for a service, which might follow a particular pattern or even occur in bursts.
During this time, some clients’ contracts haven’t yet expired while certain clients
leave the system; (ii) multiple clients usually have varying requirements and
expectations about the QoS delivered by the service provider; and (iii) there is
a need to consider new parameters such as contract duration and time of service
delivery.

The first and third characteristics mentioned above have an impact on the
server’s decision making process during negotiation. We address these issues
through an appropriate resource allocation strategy as will be explained shortly.
To handle the second characteristic that is concerned with offering differentiated
QoS, various approaches have been suggested in the literature [9]. One such
approach uses the notion of a service class, which specifies a service with common
functionality but different quality.

We can define service classes based on the QoS-Profiles of the collaborating
components as follows. Considering our video streaming scenario (section 5),
let’s assume only a VideoServer component is deployed in the server container.
If the QoS-Profiles of VideoServer are specified for a combination of 4 different
frame rates and 4 different resolutions, there are 16 different QoS-Profiles. The
16 QoS-Profiles can be grouped into 4 service classes. As an example, we see two
such service classes: premium and normal, in Table 1. Each service class defines
a range of quality levels where selected QoS points may vary within the range to
reflect the load conditions on the server. The service provider has the obligation
of providing at least the minimum qualities in each service class.

The overall system utility, U , where U =
∑

clients αiUsi , as given by a ser-
vice provider is defined as a weighted average of the utilities of each client. Usi

represents the utility of the service class si. The weight, αi, assigned to the dif-

www.manaraa.com

An Approach for QoS Contract Negotiation 99

ferent service classes capture the importance of each service class to the service
provider. The required analytical solution is to find the QoS levels in the service
class for each client that maximize U. This solution must be found under the
following conditions: (i) the user’s, conformance, and resource constraints are
satisfied (as in the single-client scenario); and (ii) a service provider’s negotia-
tion goal is taken as efficient resource utilization while at the same time fulfilling
user’s minimum QoS requirements in each service class. The second assumption
reconciles the conflicting interests of a client and server. Problems of this type
are known to be NP-hard [8]. To cope with this difficulty, we resort to a heuris-
tic solution. Before proposing an algorithm for the multiple-clients scenario, we
discuss a resource allocation strategy and policy constraints, which address the
challenges explained previously.

4.1 Resource Allocation

The resource allocation should depend on a number of factors: the total number
of clients requesting the service, the rate of new client arrivals, the existing
active contracts, and future agreed contracts, if there are any. When only few
clients make requests and there is abundant resource, services are offered at
maximum quality. On the other hand, when there are many clients and the
available resource is scant, services are offered with lesser quality.

The maximum number of clients, N , supported by the service provider concur-
rently depends among others on the type of service class selected and the service
mix (how many clients from each service class). Suppose a server’s bandwidth
capacity is 100 Mbps, and premium and normal class’ minimum bandwidth re-
quirement as in Table 1 are 2 and 0.3Mbps respectively. If only premium class is
supported, N = 50 while N = 333 for only normal class clients. N falls between
50 and 333 when mixing service classes. N has been estimated here only based
on the bandwidth requirement of each service class. Nevertheless, N can be de-
termined by the CPU requirement as the case in CPU-bound applications. The
resource that determines the size of N is termed as the bottleneck resource.

In light of the dynamic nature of load conditions, it would be appropriate
to discuss resource allocation under different load conditions and dynamics. For
this reason, we consider the following three cases: (i) light-load, (ii) conditions
where the clients’ request rate is known, and (iii) over-load.

Light-Load Case. Light-load is a situation where few clients make requests
and there is enough server resource for all of them. During this condition, the
total number of clients making requests and those already accepted is much less
than N . All clients are allocated the maximum resource based on their service
class. Referring to Table 1, for premium clients, the offered quality is 352x288,
30fps and for normal clients this is 176x144, 30fps.

Known Clients’ Request Rate Case. Under the light load case, the offered
qualities might not last the whole contract period. The rate of new client requests
may increase to the point where resources will no longer be sufficient. Related to

www.manaraa.com

100 M. Mulugeta and A. Schill

this, some questions to be addressed are: do we have to re-negotiate already es-
tablished contracts whenever new clients arrive? To what quality level should we
re-negotiate established contracts? How important is it for the server to know how
many clients are anticipated in the future? Answering these questions improves
the overall negotiation process. Simply doing negotiations for all clients (request-
ing and existing), whenever new clients arrive or with some periodicity, could make
the system less stable due to the frequent changes in the offered QoS.

The answers to some of the aforementioned questions depend on the request
rate of clients and the contract duration. A given service class’ resource require-
ment depends on the selected QoS level. Let the maximum resource requirement
for a particular service class be Rmax and the minimum be Rmin. If we assume
a service uses m different resource types (e.g. CPU, network bandwidth), then
Rmax = (r1,max, r2,max, ..., rm,max) and Rmin = (r1,min, r2,min, ..., rm,min). If
Rcap is the server’s available total capacity, Rcap = (r1,cap, r2,cap, ..., rm,cap).

Let’s assume the clients’ request rate, Creq−rate (in min−1), and contract
duration, D (in min) are constants. The maximum number of contracts active
at any one time can then be computed as: Creq−rate × D. If rk represents the
bottleneck resource (e.g. network bandwidth in a video streaming application),
then a condition for the request rate, where maximum quality can be offered
for all clients is: Creq−rate ≤ rk,cap

D×rk,max
. If this condition is satisfied, then: (i)

all clients can be allocated the maximum resource, and (ii) there is no need of
re-negotiating established contracts at any time.

If rk,cap

D×rk,max
≤ Creq−rate ≤ rk,cap

D×rk,min
, then all client requests can be fulfilled

with no request waiting. But, the offered qualities can be as low as the minimum
in each service class. Some of the clients can however be offered a quality higher
than the minimum. This can be decided through policing that may favor one
client over another. If Creq−rate >

rk,cap

D×rk,min
, not all clients’ requests can be

served immediately, even with the minimum quality. This condition leaves the
system in an overloaded situation where some clients must be rejected.

Over-Load Case. Over-load is a situation where the capacity of the service
provider isn’t sufficient to establish contracts with all of the clients requesting
service. Under this condition, the total number of clients making requests and
those whose contracts haven’t expired is greater than N .

If the number of requesting and existing clients is N ′ where N ′ > N , (N ′−N)
clients must wait for some period until they get the required service. If the size
of the queue length (in number of clients) is S, then the maximum waiting time
before a client’s request is served is computed as:(S/N) × D. If N ′ − N > S,
then N ′ −N −S clients must be rejected. Before rejecting these clients, multiple
offers must be proposed to the S clients. The offers include the interval clients
must wait before getting the service in addition to the QoS. The component
containers decide on whether or not to accept the offer provided that a user’s
preference on waiting time has been available.

When the system transitions its state from a light-load to over-load condi-
tion in an abrupt manner, which may be a result of sudden increase in new
client requests, the already established contracts in all service classes must be

www.manaraa.com

An Approach for QoS Contract Negotiation 101

re-negotiated to the minimum quality in each class. The reason for this is dur-
ing light-load conditions maximum resources are allocated to each client. When
the system already anticipates overload conditions beforehand, some appropriate
re-negotiations times must be chosen.

In general, during the over-load case, termination of some contracts may need
to be made in order to create contracts with higher priority service classes. If
the utility functions incorporated contract termination costs, we could decide on
what benefits the service provider most. But, this may create bad impressions
to certain clients and thus, the parameters that determine termination should
not solely be made in terms of monetary benefits. This is one interesting area
that needs further research.

4.2 Policy Constraints

There are certain behaviors that cannot be captured in utility functions. We
model these behaviors by policy constraints, which can be defined as an explicit
representation of the desired behavior of the system during contract negotiation
and re-negotiation. Some of the different policies that need to be incorporated
in the negotiation process concern the following areas.

1. How to make a choice on the proportions of the various service classes to
negotiate during over-load conditions? Some possible options are: (i) to follow
a strict priority policy where higher priority class always takes precedence
over lower priority classes, or (ii) to take a more responsive policy that shares
the resources among the various service classes according to a certain criteria.

2. How to move from one quality level into another when the system gradually
transitions from light-load to over-load conditions? The various options could
be: (i) not to change levels by choosing the minimum quality from the start,
(ii) choose maximum first then at some point choose minimum, and (iii)
go through all or part of the available levels starting from maximum to
minimum.

3. How to favor among clients of the same class when re-negotiating contracts?
This case is relevant when some resources are released and re-negotiations
can be done so as to increase the quality levels of existing contracts.

4.3 Algorithm

The following algorithm is based on our discussion in subsections 4.1 and 4.2
together with the negotiation algorithms developed for the single-client scenario.

Fig. 2 shows one possible interaction scenario in Algorithm 4. It focuses on
how the client and server containers interact to select concrete contracts (i.e. on
the decision making process). The negotiation is started when a client makes a
request for a particular service. Only a few of the existing clients is shown in the
diagram. Client i and Client k are new clients while Client x is a client that
has already established a contract with the server. The particular negotiation
scenario in Fig. 2 results in establishing contracts for Client i and Client k

www.manaraa.com

102 M. Mulugeta and A. Schill

Algorithm 4. Negotiation algorithm between multiple clients and a server

1) C l i en t s send r eque s t s f o r a s e r v i c e
2) Server conta ine r performs po l i c y c on s t r a i n t checks (subsec t i on 4 . 2)

i f the re i s a need to re−a l l o c a t e r e s ou r c e s to a c t i v e con t r a c t s .
3) Server a l l o c a t e s r e s ou r c e s to the new c l i e n t s (subsec t i on 4 . 1) .
4) Server makes a one to one nego t i a t i on with the new c l i e n t s and a l s o

with e x i s t i n g c l i e n t s whose con t ra c t s have to be re−negot i a t ed
us ing Algorithm 3 (subsec t i on 3 . 2) . This would r e s u l t in e s t a b l i s h i n g
con t ra c t s between the c o l l a b o r a t i n g components and between the
user and s e r v i c e prov ide r .

5) I f the re are c l i e n t s wait ing in the queue , the s e r v e r proposes an
o f f e r that conta in s the qua l i t y and the maximum wait ing time to
these c l i e n t s . I f any c l i e n t would not accept the o f f e r , i t i s
r e j e c t e d . Al l c l i e n t s that cannot be a l l o c a t e d r e sou r c e are r e j e c t e d .

Fig. 2. Possible interaction between multiple clients and a server

and a re-negotiated contract for Client x. Steps 3 and 4 are based on the dis-
cussion in subsection 4.1 and 4.2 while steps 5, 6, and 8 use Algorithm 3.

5 Example

We consider a video streaming application scenario that involves a VideoServer
component deployed in a server container and a VideoPlayer component de-
ployed in a client container (Fig. 3). We use the Comquad component model
[7] that supports streams as special interface types and allows to specify non-
functional properties for them. VideoPlayer implements two interfaces: a uses
interface ICompVideo and a provides interface IUnCompVideowhile VideoServer

www.manaraa.com

An Approach for QoS Contract Negotiation 103

Fig. 3. QoS-Profiles of VideoPlayer and VideoServer implementations

implements a provides interface ICompVideo. VideoPlayer’s ICompVideo is con-
nected to VideoServer’s ICompVideo to receive video streams for a playback at
the client’s node.

We conducted an experiment to specify the QoS-Profiles of VideoPlayer and
VideoServer. The VideoPlayer component was implemented using Sun’s JMF
framework and the VideoServer component abstracts the video media file that
has been pre-encoded into many files with differing frame rates, resolutions, pro-
tocols, and coding algorithm. Fig. 3 depicts some of the measured QoS-Profiles
of VideoPlayer and VideoServer, with UDP protocol and mp42 coding. Such
specifications are declaratively available to the containers that perform the nego-
tiation. Note that these QoS-Profiles depend on the content of the video. During
the measurements, average bandwidth and CPU percentage time have been con-
sidered. The bandwidth requirement of VideoServer is taken to be the same as
that of VideoPlayer. The measured CPU requirements of VideoServer are too
small (in the range of 0.1%) and hence have been left out from Fig. 3.

Let’s consider clients of only one service class (e.g. normal class in Table 1).
This assumption can be relaxed if the proportion of the server capacity allocated
to each class is given in the policy constraints. Let the total bandwidth capacity
at the server’s side, ri,cap, be 100Mbps, the contract duration for each client,
D = 4min, and the bandwidth requirement of the maximum quality in the
given service class, ri,max be 320Kbps while ri,min be 135Kbps. We assume that
the network bandwidth is the bottleneck resource in the considered application.

– If Creq−rate ≤ 100/(4 × 0.32) = 78min−1, all clients can be offered the
maximum service with no need of contract re-negotiations. The maximum
number of active contracts is: 4 × 78 = 312.

– Suppose there are only 50 clients currently having active contracts with the
server (light-load condition). Let’s assume that the 50 clients have all been al-
located the maximum resource, i.e. 320Kbps. Now suddenly a burst of clients
send request to the server. If the total number of clients - both requesting

www.manaraa.com

104 M. Mulugeta and A. Schill

and existing - exceeds 100/.320 = 312, then the already established contracts
must be re-allocated resource to the minimum quality, i.e. 135Kbps or some
intermediate level depending on the policy constraints and the total number
of new clients. The new clients will also not be allocated the maximum
resource but lower values.

– Once, resources are allocated to each client, a one-to-one negotiation takes
place between the server and the client using Algorithm 3. If the server
container is the one responsible for the negotiation, it has to obtain all the
input data as required by Algorithm 1 and 2.

6 Related Work

The work in [6] offers basic QoS negotiation mechanisms in only a single con-
tainer. It hasn’t pursued the case of distributed applications where components
are deployed in multiple containers. Moreover, no strategies have been proposed
for a multiple-clients scenario. In [11] QoS contract negotiation is applied when
two components are explicitly connected via their ports. In the negotiation,
the client component contacts the server component by providing its require-
ment; the server responds with a list of concrete contract offers; and the client
finally decides and chooses one of the offers. This approach covers only the pro-
tocol aspect of the negotiation process. It hasn’t pursued the decision making
aspects of the negotiation. QuA [13] aims at defining an abstract component
architecture, including the semantics for general QoS specifications. QuA’s QoS-
driven Service Planning has similarities to our concept of QoS contract nego-
tiation. Complexity issues, however, haven’t been accounted for in the service
planning.

When multiple clients are involved in the contract negotiation, the key ques-
tion is how to allocate resources to each client. In the literature, we find many
resource allocation approaches for QoS-aware distributed systems [8][2][9]. In
[8], end users’ quality preferences are considered when system resources are ap-
portioned across multiple applications such that the net utility that accrues
to the end-users is maximized. In [2] a communication server architecture that
maximizes the aggregate utility of QoS-sensitive connections for a community
of clients including the case of over-load has been proposed. In [9], a resource
allocation strategy is discussed for a clustered web-service environment. There
are basically two reasons that make our work different from those mentioned
above. Firstly, none of them approached the problem in the context of CBSE.
Secondly, the focus of most related approaches is the allocation of server re-
sources. Clients’ properties haven’t been considered together with the servers’
properties.

7 Conclusions and Outlook

We approached the QoS contract negotiation problem by first modeling it as a
constraint satisfaction optimization problem (CSOP). As a basis for this

www.manaraa.com

An Approach for QoS Contract Negotiation 105

modeling, we assumed that the provided and required QoS as well as resource
demand are specified at the component level. We have argued that the use of mul-
tiple phases simplifies the QoS contract negotiation process. Pertaining to this,
we presented algorithms comprising coarse-grained and fine-grained negotiations
for collaborating components deployed in distributed nodes in a single-client -
single-server and multiple-clients scenarios.

This paper has proposed a two-phased negotiation approach. But, we want
to extend this in the future to include more phases with the aim of reducing
the complexity of the search in the negotiation. We are also currently exam-
ining the nature of utility functions in order to be able to analytically find
globally optimal solutions. Defining a utility function is a difficult task due to
the inter-dependency of QoS-dimensions. Furthermore, more parameters need
to be incorporated into a utility function for our multiple-clients scenario. Some
parameters we intend to include concern: how to differentiate two clients of the
same service class during over-load case, and contract termination costs.

References

1. Aagedal, J.Ø.: Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo (2001)

2. Abdelzaher, T.F., Shin, K., Bhatti, N.: User-level QoS-adaptive resource manage-
ment in server end-systems. IEEE Transactions on Computers 52(5), 678–685 (2003)

3. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D.: Making components
contract aware. IEEE Computer 32(7), 38–45 (1999)

4. Freuder, E.C.: A sufficient condition for backtrack-free search. Journal of the ACM
(JACM) 29, 24–32 (1982)

5. Frolund, S., Koistinen, J.: Quality-of-Service specification in distributed object
systems. IOP/BCS Distributed Systems Engineering Journal (1998)

6. Göbel, S., Pohl, C., Aigner, R., Pohlack, M., Röttger, S., Zschaler, S.: The
COMQUAD component container architecture and contract negotiation. Technical
Report TUD-FI04-04, Technische Universität Dresden (April 2004)

7. Göbel, S., Pohl, C., Röttger, S., Zschaler, S.: The COMQUAD Component Model—
Enabling Dynamic Selection of Implementations by Weaving Non-functional As-
pects. In: AOSD’04. 3rd International Conference on Aspect-Oriented Software
Development, Lancaster, March 22–26, 2004 (2004)

8. Lee, C., Lehoczky, J., Rajkumar, R., Siewiorek, D.P.: On quality of service opti-
mization with discrete qos options. In: IEEE Real Time Technology and Applica-
tions Symposium, p. 276. IEEE Computer Society Press, Los Alamitos (1999)

9. Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A., Youssef, A.:
Performance management for cluster based web services. In: IM 2003. Proceedings
of 8th IFIP/IEEE International Symposium on Integrated Network Management,
Colorado Springs, IEEE Computer Society Press, Los Alamitos (2003)

10. Object Management Group. UML profile for modeling quality of service and fault
tolerance characteristics and mechanisms, v1.0. OMG Document (May 2006) URL
http://www.omg.org/docs/formal/06-05-02.pdf

http://www.omg.org/docs/formal/06-05-02.pdf

www.manaraa.com

106 M. Mulugeta and A. Schill

11. Ritter, T., Born, M., Unterschutz, T., Weis, T.: A QoS metamodel and its re-
alization in a CORBA component infrastructure. In: Proceedings of the Hawaii
International Conference on System Sciences (2003)

12. Röttger, S., Zschaler, S.: CQML+: Enhancements to CQML. In: Bruel, J.-M. (ed.)
Proc. 1st Int’l Workshop on Quality of Service in Component-Based Software En-
gineering, Toulouse, France, June 2003, pp. 43–56. Cépaduès-Éditions (2003)

13. Staehli, R., Eliassen, F., Amundsen, S.: Designing adaptive middleware for reuse.
In: ARM ’04. Proceedings of the 3rd workshop on Adaptive and reflective middle-
ware, pp. 189–194. ACM Press, New York (2004)

14. Tsang, E.P.K.: Foundations of Constraint Satisfaction. Academic Press, London
and San Diego (1993)

www.manaraa.com

A Study of Execution Environments for Software
Components

Kung-Kiu Lau and Vladyslav Ukis

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

{kung-kiu,vukis}@cs.man.ac.uk

Abstract. Software components are deployed into an execution environment be-
fore runtime. The execution environment influences the runtime execution of a
component. Therefore, it is important to study existing execution environments
for components and learn how they influence components’ runtime execution. In
this paper, we undertake such a study. We show that deploying components into
different execution environments may incur runtime conflicts, which, however,
can be detected before runtime.

1 Introduction

The execution environment for a software component controls the component’s lifecy-
cle, beginning with component instantiation through runtime management to shutdown.
Currently, there are two widely used execution environments for components [13]:
desktop and web. The problem we set out to investigate in this paper is: Given a com-
ponent, how can we determine which execution environments it can be deployed into?

This problem becomes more acute when components are developed by component
developers but used by system developers independently [2]. In such a situation, on the
one hand, the component developers develop components without the knowledge of the
execution environments they will be deployed into; and, on the other hand, the system
developers deploy the components into specific execution environments not knowing
if the chosen components are suitable for these environments. In this situation, it is
important for the system developers to be able to check if a component is suitable for
running in a particular execution environment. Current component models do not allow
for this kind of checking. In this paper, we make a study of execution environments to
enable that.

The work in this paper builds on the work we presented in [9]. In that paper we con-
sidered how deployment contracts for components can be defined, and used to check
mutual compatibility between components. In this paper, we consider how the deploy-
ment contracts for components can be used to check a component’s compatibility with
its execution environment. Preliminary checking of this kind was introduced in [9]. In
this paper we undertake a thorough study of what is involved when checking a compo-
nent’s compatibility with its execution environment. The results of the study enable us
to extend our Deployment Contracts Analyser Tool [9] to automatically check a com-
ponent’s compatibility with its execution environment.

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 107–123, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

108 K.-K. Lau and V. Ukis

2 Execution Environments

In this section we study widely used execution environments for components. In gen-
eral, when we talk about the execution environment in this paper we do not mean com-
ponent containers as they are not necessarily present in current component models. In
fact, despite widely used component models such as EJB [6] and JavaBeans [3] em-
ploying containers for component execution, the majority of current component models
do not use containers [12].

The distinction between a container and an underlying component execution envi-
ronment can be seen clearly in Fig. 1.

DD

Execution EnvironmentExecution Environment

Container

DD

? ? ?

BA

BA

Fig. 1. Component deployment in an execution environment with and without container

On the left hand side in Fig. 1, components A and B are deployed into a container.
This is typically done using so-called Deployment Descriptors (DD) [1] that describe
the relationship between a component and the container. The container itself, however,
is deployed into an execution environment in our sense. The question mark between the
container and the execution environment denotes the question of compatibility of the
container with the environment.

On the right hand side in Fig. 1, components A and B are deployed directly into the
execution environment (without the container). That is, the execution environment is
there regardless of the existence of container and impacts component runtime execution.
The question marks between the components and the execution environment denotes the
uncertainty of compatibility of the components with the environment.

In order to investigate execution environments that are widely used, we turned our
attention to platforms widely used for software development in practice [5]. These are
the J2EE [14] and .NET [16] platforms. The platforms allow for the development of
software that can be deployed into two different execution environments: desktop and
web (server). These execution environments are ubiquitous today [13]. In this paper,
we want to undertake an analysis of them to find out their characteristics and differ-
ences that should lead us to the answer to the question we posed in section 1: Given a
component, how can we determine which execution environments it can be deployed
into?

The analysis we want to undertake in this paper will be implemented in a tool that
will automatically check a component’s suitability to run in a particular execution en-
vironment. In order to implement the tool we need to know the properties of interest of
current component execution environments first.

www.manaraa.com

A Study of Execution Environments for Software Components 109

2.1 Properties of Interest

Let us consider a binary component deployed into an execution environment. Such a
component is shown in Fig. 2. The component is ready made and ready for execution. It
may access some resources from the execution environment in order to be able to run [9].
Furthermore, it may have some specific threading model implemented inside [9].

Execution Environment

A

Deployment

Threading ModelUsed Resources

Available Resources Concurrency Management

Fig. 2. Properties of interest in an execution environment

Therefore, in order to find out how a component execution environment can influence
the runtime execution of the component, we have to find out which resources can be
available as well as what the concurrency management is in the execution environment,
in general.

For instance, in Fig. 2 the component A at deployment time has some environmental
dependencies and a threading model, and is deployed into an execution environment.
In order to find out how the execution environment influences runtime execution of
the component A, we have to know the resources offered by the environment and the
concurrency management of the environment.

Additionally, we need to know how the execution environment manages transient
state [15,7] of the component. The transient state of the component, unlike persistent
state, can exist only for the lifetime of a component instance. It is shared by requests
to the instance, and disappears when the instance vanishes. Transient state is inherently
connected to concurrency because it is the state which is shared by multiple threads
operating concurrently in the component and has to be protected from corruption by
thread synchronisation primitives.

In summary, we need to know the following properties of an execution environment
to be able to assess its impact on the component executing in it: Transient State Man-
agement, Concurrency Management, Availability of Resources. In the following section
we investigate these properties for the desktop environment based on an analysis of the
J2EE and .NET platforms.

3 Desktop Execution Environment

The desktop environment is an execution environment for systems deployed on a desk-
top. Known examples of desktop applications are Adobe Acrobat Reader, Ghost Viewer
etc. They provide a Graphical User Interface (GUI) to enable the user to interact with the
system. Moreover, small programs like UNIX commands, e.g. ls or ps, also

www.manaraa.com

110 K.-K. Lau and V. Ukis

User

use A B

Desktop Execution Environment

Fig. 3. A system deployed into a desktop environment

represent examples of systems deployed into the desktop environment. These systems
do not provide a GUI interface but are launched using a command shell.

A typical user interaction with systems deployed into the desktop environment is
shown in Fig. 3.

A system consisting of the components A and B assembled together is deployed
into the desktop environment. There is a single user interacting with the system. It is
a distinguishing characteristic of the desktop environment that it enables a single user
to interact with a system instance. (We consider a system to reside on one machine and
not to be distributed over several computers)

In the following, we consider Transient State Management, Concurrency Manage-
ment and Availability of Resources, the properties we identified to be important in Sec-
tion 2.1, in the desktop environment.

3.1 Transient State Management

If a system is deployed into the desktop environment, it is instantiated by it on the
system startup and destroyed on the system shutdown. If in the meantime, i.e. in the time
when requests are placed to the system, a component accumulates state,1 the desktop
environment does not interfere.

This is shown in Fig. 4. The component A is deployed into the desktop environment.

No Influence

Desktop Execution Environment

A

State

Deployment

Fig. 4. Transient state management in the desktop environment

It holds transient state, and therefore can be referred to as stateful component. The
desktop execution environment does not have an influence on the component A’s state.

3.2 Concurrency Management

In general, it is possible to deploy both single-threaded and multithreaded systems into
the desktop environment. If the system is single-threaded, it uses the main thread,
provided by the desktop environment, to process requests. If the system is multithreaded,

1 We mean “transient state” when referring to “state” in this paper.

www.manaraa.com

A Study of Execution Environments for Software Components 111

it spawns other threads in addition to the main thread for request processing. The distin-
guishing characteristic of the concurrency management in the desktop environment is
that the main thread is guaranteed to be the same for every request placed to a system
instance during its lifetime.

This is illustrated in Fig. 5.

Desktop Execution Environment

A B

Main Thread Affinity

Deployment

Fig. 5. Concurrency management in the desktop environment

The system AB consists of two components A and B. Each of the components has
its own threading model. Depending on the threading model of either component, the
system may be single- or multithreaded. In any case, the system makes use of the main
thread provided by the desktop environment. It is ensured by the desktop environment
for the system AB that the main thread remains the same for the lifetime of a system
instance.

This has implications on the elements in components, which require thread affine
access. In the desktop environment, such elements can be safely used from the main
thread since it is guaranteed to be the same for all requests placed to the system.

3.3 Resource Availability

An execution environment can contain a set of resources that can be used by compo-
nents deployed in it. In order to find out which resources can be found in the set, we
studied the APIs of the J2EE and .NET frameworks that provide access to them. The
results of our investigation are shown in Fig. 6. The resource set is as applicable to the
desktop environment as it is to the web environment (see later).

The categories of resources in Fig. 6 are self-explanatory. Detailed descriptions of
the categories can be found in [10]. Each resource from the categories may or may not
be available in a particular execution environment. Therefore, when deploying a com-
ponent into an execution environment, it is necessary to check if the resources required
by the component are available in the execution environment.

Performance CountersEvent Logs Directory Services

Residential Services

Resource Set

Databases

File SystemInput/Output Devices

Execution Environment

Registry StorageNetwork

Message Queues

Fig. 6. Resources in an execution environment

www.manaraa.com

112 K.-K. Lau and V. Ukis

The resources we discovered are restricted to and complete with respect to the APIs
of the J2EE and .NET frameworks. However, the comprehensiveness and wide applica-
bility of the investigated frameworks should imply the same for the derived results.

3.4 Deploying Components into Desktop Execution Environment

In this section, we show an example of components deployed into the desktop environ-
ment.

To show the example, we make use of a tool we have developed and initially pre-
sented in [9,8]. The tool is the Deployment Contract Analyser (DCA). One of the pur-
poses of the tool is to enable automated checking of compatibility of a component with
the execution environment it is deployed into. The checking is done statically on binary
components when they are at deployment time (as opposed to instantiated components
at runtime).

The DCA implements the properties of the desktop and web execution environments
we present in this paper. It takes as input binary components that are augmented with
deployment contracts [9,10]. A deployment contract of a component indicates the com-
ponent’s threading model and usage of resources in the execution environment. It is
manually defined by component developer. Knowing a component’s deployment con-
tract and its execution environment (specified using a graphical tool that can be seen
in [8]), the DCA can detect conflicts of the component with the execution environment
and present them to the user. Consider the example shown in Fig. 7.

Design

Is the assembly conflict−free?

Deployment

B A BA

Execution Environment: Desktop
 public void Method1(){...}

{
public class Component37

{

}
 public void Method1(){...}
[RequiredThreadAffineAccess]

}

 [AccessComponentTransientState(
 StateAccess.Read|StateAccess.Write)]

public class Component38

Fig. 7. Example 1

Component A is designed in a way that its method “A.Method1” accesses compo-
nent’s transient state in Read/Write mode. Component B is designed in a way that its
method “B.Method1” requires thread affine access. This can be seen from their deploy-
ment contracts in Fig. 7.

Suppose at deployment time, a system AB is created. In the system, components’
methods are connected so that there is one connection: Connection 1: method
“A.Method1” is invoked prior to the method “B.Method1”. The system AB is deployed
into the desktop environment. Resources available in the execution environment are ir-
relevant in this case.

Deployment contracts analysis performed by the DCA for the system AB is shown
in Fig. 8.

Neither for the component A (Component37 in Fig. 8), nor for the component B
(Component38 in Fig. 8) has the DCA found any problem. Therefore, the system AB is
conflict-free and can execute safely at runtime.

www.manaraa.com

A Study of Execution Environments for Software Components 113

Fig. 8. Deployment contracts analysis for the Example 3

In the following section we consider properties of the web execution environment
and try deploying the assembly AB in it.

4 Web Execution Environment

The web execution environment is an environment for systems deployed on a web
server. Known examples of such systems are web portals like Amazon or search en-
gines like Google.

A typical user interaction with such systems is shown in Fig. 9.

User N (Web Service)User 1 (Web Browser)

A B
use

Web Execution Environment

use

(Web Server)

Fig. 9. System in web execution environment

A system AB consisting of two components A and B is deployed into the web envi-
ronment. There are many users, possibly simultaneously, interacting with the system. It
is a distinguishing characteristic of the web environment that it enables many users to
interact with a system instance. A user typically uses a web browser to interact with a
system deployed into the web environment, but it can also be accessed by web services
(Fig. 9).

In the following, we consider Transient State Management and Concurrency Man-
agement, the properties we identified to be important in Section 2.1, in the web envi-
ronment.

4.1 Transient State Management

The distinguishing characteristic of the web environment is that the user interacts with
the system on the web server using Hyper Text Transfer Protocol (HTTP) [4]. The

www.manaraa.com

114 K.-K. Lau and V. Ukis

User (Web Browser)

A

HTTP Response 2 (Web Server)
Web Execution Environment

HTTP Response 1

HTTP Request 1

B

HTTP Request 2

Fig. 10. Request-Response interaction mode using HTTP protocol

HTTP Protocol implements an interaction mode referred to as Request-Response mode
[13]. This is shown in Fig. 10.

The user places an HTTP Request 1 to the system and receives a result. Subsequently,
the user places another HTTP Request 2 to the system and receives a result to it. An
important characteristic of the HTTP protocol is that it does not maintain any transient
state between HTTP requests. It is therefore referred to as a stateless protocol. In fact,
an HTTP request does not maintain any relationship to previous requests issued to the
system on the web server. For instance, in the example from Fig. 10, at the beginning of
the interaction, the HTTP Request 1 is sent to the web server, processed by the system
and a result is returned to the user. The user is now completely disconnected from the
web server. The web server, in turn, does not maintain any transient state about the
Request 1 placed by a user. It, indeed, has “forgotten” about it. Now, the user places
another request to the system, HTTP Request 2. This request does not maintain any
relationship to Request 1 and is processed by the system without any transient state
related to Request 1.

However, why did the web server “forget” about Request 1? The truth is that the
HTTP protocol’s Request-Response interaction mode operates in a way that for each
HTTP request the client establishes a new connection to the web server. The web server,
in turn, creates a new system instance. The newly created system instance processes the
request and generates a result. The web server destroys the system instance and sends
the result back to the client. On the next request, the chain of the events is repeated etc.

This is exemplified in Fig. 11 for the two HTTP requests we considered before.

User (Web Browser)

HTTP Request 2

InsB 2

InsB 1

InsA 2

Web Execution Environment
(Web Server)

HTTP Response 1

HTTP Request 1

HTTP Response 2

Runtime

Runtime

(Web Server)
Web Execution Environment

InsA 1
State A State B

Fig. 11. Request-Response interaction mode and system instantiation

At the time when the user places Request 1 to the system AB, a system instance
actually does not exist. It is only created by the web server when the request arrives
there. The newly created system instance processes the request and generates a result.
Subsequently, the web server destroys the system instance and sends the result back

www.manaraa.com

A Study of Execution Environments for Software Components 115

to the user. The user is now not only disconnected from the system, which processed
Request 1, but the system instance actually does not physically exist any more. The
web server does not maintain any information about Request 1 either. Now, the user
places another request, Request 2, to the system AB. Again, no system instance exists
till the request arrives at the web server, which creates a new system instance. The
system instance processes the Request 2 and generates a result. After that the web server
destroys the instance and returns the result. Again, no system instance exists till another
request to the system AB hits the web server.

In such an environment, any component transient state cannot be retained between
requests to the system. For instance, assuming components in Fig. 11 hold transient
state. The component A holds ‘State A’, whereas the component B hold ‘State B’. These
transient states exist only for the lifetime of a system instance. Since the web server
destroys the instance at the end of a request processing and creates another one at the
beginning of the processing of the next request, the states ‘State A’ and ‘State B’ exist
only during processing of Request 1 and do not exist during processing of Request 2.

Components that do not hold state, i.e. stateless components, can be deployed into
and smoothly run in the web environment. They are immune to instance creation and de-
struction by the web server since they process each request individually without reliance
on state information from previous requests. They, therefore, represent ideal candidates
for the web environment. By contrast, components that do hold state, stateful compo-
nents, pose a problem in the web environment since it, unlike the desktop environment,
does not retain component state in between requests to the system.

In order to deal with the statelessness of the web environment, different technologies
for web application development have been put forward. For instance, the J2EE Plat-
form contains Java Server Pages (JSP) technology for web application development.
Furthermore, .NET platform has Active Server Pages (ASP.NET) technology for the
same purpose. These technologies allow for state retention in components on the web
server. More traditional techniques for web application development such as Common
Gateway Interface (CGI) scriptsfollow the Request-Response model of the HTTP pro-
tocol explained above and do not retain state on the web server side. JSP and ASP.NET
are technologies that are representative and widely used in practice. We undertook a
thorough analysis of them in [11]. For lack of space, we only present the essential find-
ings of the analysis here.

4.2 Transient State Management in Java Server Pages

JSP from J2EE platform is a technology for building web applications. It is based on
Java Servlet Technology, which is also part of the J2EE platform.

Java Servlet Technology provides a special container running on the web server.
The container hosts and manages components referred to as “Servlets”. The servlet
container prevents servlets from being created and destroyed by the web server on each
request processing cycle. It ensures that there is always one instance of component
system to process all requests from all users. This is illustrated in Fig. 12.

Users place, possibly simultaneous, requests to the system AB. A system instance
is running in the servlet container, which, in turn, is running on the web server. The
container makes sure that the web server does not destroy the instance at the end of

www.manaraa.com

116 K.-K. Lau and V. Ukis

User 1 (Web Browser) User N (Web Service)

InsA InsB

use

Storage
State

Application Session
State

Storage

Servlet Container

Web Environment (Web Server)

Runtime

use

State BState A

Fig. 12. Servlet Container

each request processing. Therefore, the components A and B can safely hold state and
make use of it for request processing.

In addition, the servlet container offers two types of storage to component develop-
ers. That is, application and session state storage. On the one hand, application state
storage can store information for the lifetime of a system instance. Moreover, it is shared
among all users of a web application. On the other hand, session state storage stores in-
formation for the lifetime of a user or browser session. The session state storage is
therefore user-specific. A user, or browser, session embraces a specific number of re-
quests from a web browser instance to the system on the web server.

If a system in the web environment is going to have a large number of concurrent
users, it is inefficient to have a single system instance process all user requests. There-
fore, the Java Servlet Technology provides another mode of system instantiation re-
ferred to as Single Thread Model. With this model, the servlet container instantiates
not only one but a fixed, configurable, number of more than one system instances that
process user requests. If the user requests are concurrent, the load is distributed among
available system instances.

With the Single Thread Model, the container guarantees that a system instance is
accessed by one and only one thread per request, and not concurrently. However, the
container does not guarantee that all requests from a user will be processed by the same
system instance. This makes state management in the system complicated. Indeed, a
user request may be processed by a system instance. The system instance may accumu-
late some transient state during the request. Then, another request from the same user
may be processed by another system instance, whose component instances do not hold
the data created on the previous request. It becomes even more complicated to hold
some global data in the system. However, for all these cases, the usage of application
and session state storage provides a solution to cope with state retention issues.

Now we consider how state is managed with another technology – ASP.NET.

4.3 Transient State Management in Active Server Pages

Active Server Pages (ASP.NET) from .NET platform is another technology for devel-
oping web applications. It provides a special environment referred to as ASP.NET envi-
ronment. The ASP.NET environment runs on a web server and hosts .NET components.
This is shown in Fig. 13.

Components A and B are running inside the ASP.NET environment, which in turn
runs on a web server. The default behaviour of the ASP.NET environment, unlike servlet

www.manaraa.com

A Study of Execution Environments for Software Components 117

User N (Web Service)User 1 (Web Browser)

InsA InsB

ASP.NET Environment

Storage
State

Application Session
State

Storage

Web Environment (Web Server)

use

Runtime

use

State BState A

Fig. 13. ASP.NET Environment

container, with respect to system instantiation is that it follows the Request-Response
model of HTTP protocol. That is, the ASP.NET environment creates and destroys a
system on each request processing cycle. However, like the servlet container, it offers
application and session state storage to component developers to deal with state reten-
tion issues.

Overall, the web environment, unlike the desktop environment we learnt in Section 3,
has great influence on state inside components of a system. The influence depends on
the technology used as summarised in Table 1.

Table 1. Transient state management in the web environment

Request–Response Mode (CGI) ASP.NET JSP
System System state is not retained 1) Default: System 1) Default: state is retained
transient among requests to the system. state is not retained. 2) Application and Session
state 2) Application and state storage available.
manage- Session state storage 3) Single Thread Model:
ment available. state is not retained.

4.4 Concurrency Management

A system deployed on a web server is exposed to, theoretically, an unlimited number of
concurrent users. Therefore, concurrency issues are inherent in such an environment. A
web server spawns a thread for every request it receives. Following this, we can con-
clude that in the web environment the main thread is not guaranteed to be the same
for every request placed to a system instance during its lifetime. The handling of a re-
quest depends on the technology used for web application development, i.e. CGI, JSP or
ASP.NET. Moreover, it depends on the way a technology is used. In particular, concur-
rency management in the web environment depends on the chosen system instantiation
mode. Below, we undertake a brief categorisation of system instantiation modes in the
web environment. Full details can be found in [11].

4.5 System Instantiation Modes

With CGI, Request-Response mode imposed by the HTTP protocol is used. That is,
a system instance is created at the beginning of a request processing and destroyed

www.manaraa.com

118 K.-K. Lau and V. Ukis

after the request has been processed by the instance. In other words, in this mode a
system instance per request is created. This is also the default mode of operation with
ASP.NET.

Moreover, with ASP.NET, it is possible to create a system instance per user session
by using the session state storage. That is, a system instance is created on the first
request from a specific user and is put into the session state storage. On all subsequent
requests from the same user, the system is retrieved from the session state storage and
used for request processing.

Furthermore, with JSP, by default, the servlet container creates a system instance
which processes all requests to the system. Therefore, in this mode there is a system
instance for all requests. The same behaviour can be achieved with ASP.NET by using
the application state storage. That is, a system instance is created on the first request
and is put into the application state storage. On all subsequent requests, the system is
retrieved from the application state storage and used.

Finally, with the servlet container using Single Thread Model, a pool of system in-
stances is created. The container guarantees that a system instance is accessed by only
one thread during a request processing. In other words, in this mode a pool of synchro-
nised system instances for all requests is created.

In summary, we can identify the following four system instantiation modes in the
web environment: A System Instance Per Request, A System Instance Per User Session,
A System Instance For All Requests, A Pool Of Synchronised System Instances For All
Requests. They correspond to the individual technologies for building web applications
in the way shown in Table 2.

Table 2. System instantiation modes in the web environment with corresponding technologies
for building web applications

System System System Pool of synchronised
instance instance per instance for system instances

per request user session all requests for all requests
CGI default not available not available not available
JSP not available not available default Single Thread Model
ASP.NET default use of session use of application not available

state storage required state storage required

Observations on Concurrency Management in Web Environment. An inherent
property of the web environment is that it enables a system to be accessed by, poten-
tially concurrent, multiple users. As a corollary, the web environment itself may impose
threading issues on a system instance by exposing it to multiple threads. Moreover, the
concurrency management in the web environment depends heavily on the system in-
stantiation mode used. During the analysis of the concurrency management in the web
environment [11], we encountered the following three problems:

State Corruption Problem – This problem occurs when multiple threads concurrently
access state of a component, which is not protected by a thread synchronisation
primitive.

www.manaraa.com

A Study of Execution Environments for Software Components 119

Lack of Thread Affinity Problem – This problem occurs when a component containing
thread affine elements is not always accessed by one and the same thread.

Shared Statics and Singletons Problem – For this problem to occur, the following con-
ditions must be met: (i) A component in a system must contain static variables (statics)
or singletons, (ii) The system must be instantiated more than once in an operating sys-
tem process, (iii) Created system instances must be executed concurrently to each other
by the execution environment. This means that a system instance itself may not be ex-
ecuted concurrently but process requests sequentially. However, other system instances
are also executed at the same time, (iv) The statics or singletons are not used by a
thread-safe component part.

In this case, the statics or singletons are shared by component instances that are
executed concurrently. Since they are unprotected from concurrent access by multiple
threads, state corruption in them will occur. This problem, indeed, boils down to the
state corruption problem described above. However, since it has far more conditions to
emerge we can treat it as a problem in its own right.

With these problems defined, in the Table 3 we show occurrences of them depending
on the system instantiation mode used.

Table 3. System transient state and concurrency management depending on system instantiation
mode in the web environment

System System System Pool of
instance instance per instance for all synchronised system

per request user session requests instances for all req.
Concurrency A system A system Concurrent A system instance
management instance is instance can be access of a can be accessed by

accessed by accessed by mult. system instance multiple threads
one thread threads sequentially by multiple thr. sequentially

System System state System state is System state is System state is not
transient is not retained retained during retained among retained among
state managment among requests a user session all requests requests
State Corr. Problem No No Yes No
Lack of Thread No Yes Yes Yes
Affinity Problem
Shared Statics and Yes Yes No Yes
Singletons Problem

With the system instantiation mode “system instance per request”, a system instance
is accessed by only one thread provided by the web environment. Therefore, the lack
of thread affinity problem cannot occur here. Furthermore, the system state is not re-
tained among requests to the system. Therefore, in this case the state corruption prob-
lem cannot occur. However, the shared statics and singletons problem may occur here
if different users place their requests to different system instances concurrently.

Furthermore, with the system instantiation mode “system instance per user session”,
a system instance can be accessed by multiple threads but only sequentially. System
state is retained during a user session. However, since no threads operate concurrently

www.manaraa.com

120 K.-K. Lau and V. Ukis

in a system instance, no state corruption problem will occur. On the other hand, due to
the access of the system by multiple threads, lack of thread affinity problem may occur.
Moreover, since in this mode a system instance is created for each user and they all reside
in a single operating system process, shared statics and singletons problem may occur.

Additionally, with the system instantiation mode “system instance for all requests”,
a system can be accessed concurrently by multiple threads. System state is retained
among requests. Therefore, the state corruption problem may occur here. Furthermore,
since the system is not always accessed by one and the same thread, lack of thread
affinity problem may occur. As to the shared statics and singletons problem, it cannot
occur here since there is only one system with this system instantiation mode.

Finally, with the system instantiation mode “pool of synchronised system instances
for all requests”, a system instance can be accessed by multiple threads but only se-
quentially. System state is not retained among requests. Following this, there is also no
state corruption problem. Moreover, there is no guarantee of the thread affinity of the
main thread for a system instance. Therefore, the lack of thread affinity problem may
occur. Since there are several system instances all residing in the web server process,
the shared statics and singletons problem may occur here as well.

4.6 Deploying Components into Web Execution Environment

In this section we show how the system AB from the Section 3.4 can be deployed into
the web execution environment.

Example 1. Consider the system AB from the Section 3.4 deployed into the web envi-
ronment with the system instantiation mode ‘system instance per user session’ (Fig. 14).

Is the assembly conflict−free?

DeploymentDesign

Execution Environment: Web

BA

’Assembly Instance Per User Session’

Assembly Instantiation Mode:

BA

public class Component38

 StateAccess.Read|StateAccess.Write)]
 [AccessComponentTransientState(

}

[RequiredThreadAffineAccess]
 public void Method1(){...}
}

{
public class Component37
{

 public void Method1(){...}

Fig. 14. Example 1

Deployment contracts analysis performed by the DCA for the system AB is shown
in Fig. 15.

Fig. 15. Deployment contracts analysis for the Example 1

www.manaraa.com

A Study of Execution Environments for Software Components 121

For component B (Component38 in Fig. 15), the DCA finds out that the requirement
of the method “A.Method1” cannot be satisfied due to the concurrency management of
the environment the system AB is deployed to, namely absence of thread affinity of the
main thread.

Moreover, in this environment, state is only retained for the duration of a user session.
This is relevant for the component A (Component37 in Fig. 15). Assume that this is
acceptable for the system the system developer is building.

Deployment contracts analysis of the system AB has shown 1 error. Therefore, the
system AB is not conflict-free and cannot execute safely at runtime. Component B has
to be replaced by another one in the system AB.

Example 2. Consider the system from Section 3.4 deployed into the web environment
with the system instantiation mode ‘system instance for all requests’. Resource avail-
able in the execution environment are irrelevant in this case (Fig. 16).

Is the assembly conflict−free?

Design Deployment

A A B

’Assembly Instance For All Requests’

B

Assembly Instantiation Mode:

Execution Environment: Web

 public void Method1(){...}

{
public class Component37

{

}
 public void Method1(){...}
[RequiredThreadAffineAccess]

}

 [AccessComponentTransientState(
 StateAccess.Read|StateAccess.Write)]

public class Component38

Fig. 16. Example 2

Deployment contracts analysis performed by the DCA for the system AB is shown
in Fig. 17.

Fig. 17. Deployment contracts analysis for the Example 2

For component A (Component37 in Fig. 17), the DCA finds out that component’s
state will be accessed concurrently in the system’s execution environment. Since the
state is unprotected from concurrent access by multiple threads, state corruption prob-
lem will occur.

For component B (Component38 in Fig. 17), the DCA finds out that the requirement
of the method “A.Method1” cannot be satisfied due to the concurrency management of
the environment the system AB is deployed to, namely concurrent access of the system
by multiple threads.

www.manaraa.com

122 K.-K. Lau and V. Ukis

Deployment contracts analysis of the system AB has shown 2 errors. Therefore, the
system AB is not conflict-free and cannot execute safely at runtime.

5 Discussion and Concluding Remarks

As we have seen in Sections 3 and 4, desktop and web environments differ substantially
with respect to the management of state and concurrency of systems deployed in them.
The major differences are: system instantiation, handling of component state, allocation
of the main thread for a system instance and the way a system instance is exposed to the
users.

Table 4 shows how these criteria are handled in the desktop and web execution envi-
ronment.

Table 4. Comparing the properties of the desktop and web execution environment

Desktop Environment Web Environment
System instantiation Once for all requests Depends on technology
State retention issues No Yes
Main thread affinity Yes No
Exposure to multiple threads No Yes

In the desktop environment, system instantiation is done at system start. The created
system instance processes all requests to the system. By contrast, in the web environ-
ment, the used technology greatly influences the handling of system instantiation. It can
range from a system instance per request through a system instance for all requests.

Furthermore, in the desktop environment, there are no state retention issues due to
the fact that a single system instance processes all requests to the system. Contrary, in
the web environment, it requires an effort to retain state among requests to the system
since it is by far not a common case that a single system instance processes all requests.
Rather, different technologies deal with system instantiation differently making it com-
plicated to maintain state among requests.

Moreover, in the desktop environment, the main thread for a system instance is guar-
anteed to be always one and the same. However, this does not hold true for the web
environment. Again, the issue of main thread affinity depends on the technology used
for building web applications.

Additionally, in the desktop environment, a system instance is never exposed to mul-
tiple threads induced by the environment. Unlike the desktop environment, the web
environment makes it possible for a system instance to be concurrently accessed by
multiple users, thus exposing the instance to the concurrent access of multiple threads.

The main contribution of this paper is the analysis of what is involved in deploying
a component into different execution environments. The study of the execution envi-
ronments undertaken in this paper has enabled us to extend our DCA tool to perform
compatibility checks of components with their execution environments.

As a matter of fact, such checks are not performed by any of current component
models [12]. However, in sections 3.4 and 4.6 we showed that neglecting these checks

www.manaraa.com

A Study of Execution Environments for Software Components 123

leaves systems go into runtime with conflicts that impair runtime system execution. We
also showed how these conflicts can be checked at deployment time, before runtime,
using the Deployment Contracts Analyser [8] tool we have developed and extended
since its initial presentation in [9].

Our future work will consist in investigating the OSGI framework to extract more
expressive deployment contracts for components. Furthermore, we will implement a
tool that help the component developer apply the contracts to their components.

Finally, full details of the study of component execution environments and more
examples can be found in [8].

References

1. Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R.,
Wallnau, K.: Volume II: Technical Concepts of Component-Based Software Engineering.
Technical Report CMU/SEI-2000-TR-008, Carnegie Melon University (2000)

2. Crnkovic, I., Schmidt, H.W., Stafford, J.A., Wallnau, K.C.: Automated Component-Based
Software Engineering. Journal of Systems and Software 74(1), 1–3 (2005)

3. Englander, R.: Developing Java Beans. O’Reilly & Associates (1997)
4. Fielding, R., Gettys, J., Mogul, J., Nielsen, H., Berners-Lee, T.: Hypertext transfer protocol

HTTP/1.1, 1997. RFC 2068 (1997)
5. Fowler, M., Box, D., Hejlsberg, A., Knight, A., High, R., Crupi, J.: The great J2EE vs. Mi-

crosoft .NET shootout. In: OOPSLA ’04: Companion to the 19th annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications, pp. 143–
144. ACM Press, New York (2004)

6. Haefel, R.M.: Enterprise Java Beans, 4th edn. O’Reilly (2004)
7. Heineman, G.T., Councill, W.T. (eds.): Component-Based Software Engineering: Putting the

Pieces Together. Addison-Wesley, Reading (2001)
8. Lau, K.-K., Ukis, V.: A Reasoning Framework for Deployment Contracts Analysis. Preprint

37, School of Computer Science, The University of Manchester, Manchester, M13 9PL, UK
ISSN 1361 - 6161 (June (2006)

9. Lau, K.-K., Ukis, V.: Defining and Checking Deployment Contracts for Software Compo-
nents. In: Gorton, I., Heineman, G.T., Crnkovic, I., Schmidt, H.W., Stafford, J.A., Szyperski,
C.A., Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 1–16. Springer, Heidelberg (2006)

10. Lau, K.-K., Ukis, V.: Deployment Contracts for Software Components. Preprint 36, School
of Computer Science, The University of Manchester, Manchester, M13 9PL, UK, ISSN 1361
- 6161 (February 2006)

11. Lau, K.-K., Ukis, V.: On Characteristics and Differences of Component Execution Environ-
ments. Preprint 41, School of Computer Science, The University of Manchester, Manchester,
M13 9PL, UK, ISSN 1361 - 6161 (February 2007)

12. Lau, K.-K., Wang, Z.: A taxonomy of software component models. In: Proceedings of the
31st Euromicro Conference, pp. 88–95. IEEE Computer Society Press, Los Alamitos (2005)

13. Lee, D., Baer, J.-L., Bershad, B., Anderson, T.: Reducing startup latency in web and desktop
applications. In: 3rd USENIX Windows NT Symposium, Seattle, Washington, July 1999, pp.
165–176 (1999)

14. Sun Microsystems. Java 2 Platform, Enterprise Edition. http://java.sun.com/j2ee
15. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Pro-

gramming, 2nd edn. Addison-Wesley, Reading (2002)
16. Wigley, A., Sutton, M., MacLeod, R., Burbidge, R., Wheelwright, S.: Microsoft.NET Com-

pact Framework (Core Reference). Microsoft Press (January 2003)

http://java.sun.com/ j2ee

www.manaraa.com

Monitoring Architectural Properties in Dynamic
Component-Based Systems�

Henry Muccini1, Andrea Polini2, Fabiano Ricci1, and Antonia Bertolino2

1 Dipartimento di Informatica
University of L’Aquila

Via Vetoio, 1 – L’Aquila, Italy
2 Istituto di Scienza e Tecnologie dell’Informazione - “Alessandro Faedo”

Area della Ricerca del CNR di Pisa
Via Moruzzi, 1 – 56124 Pisa - Italy

muccini@di.univaq.it, andrea.polini@isti.cnr.it,
fabiano.ricci@di.univaq.it, antonia.bertolino@isti.cnr.it

Abstract. Modern systems are increasingly required to be capable to evolve at
run-time, in particular allowing for the dynamic plugging of new features. It is im-
portant that this evolution happens preserving some established properties (which
can concern the structure, the interaction patterns, or crucial extra-functional
properties, such as reliability or security), and due to dynamicity this needs to
be checked at run-time, as the changes occur.

In this work we consider evolving component-based systems formed by a ker-
nel architecture to which new components can be plugged in at run-time, and
introduce the MOSAICO approach for the run-time monitoring of architectural
properties. MOSAICO uses Aspect-oriented technologies for instrumenting and
monitoring the system according to selected architectural properties. MOSAICO
can handle evolving black-box component systems since it continuously watches
the events occurring at the extension points of the kernel architecture.

The application of a prototype implementation of MOSAICO, capable to han-
dle interaction pattern properties, is illustrated on the NewsFeeder case study.

1 Introduction

An increasingly important requirement for modern software-intensive systems is the
ability of changing over time, to address the need to dynamically add/remove features,
and to protect the system from incoming attacks or run-time malfunctions. However,
this newly acquired level of dynamicity makes it more complex to guarantee certain
qualities of the system. This problem even exacerbates in the context of component-
based systems (CBSs).

Being a CBS an assembly of reusable components designed to meet the quality at-
tributes identified during the architecting phase, the quality of a CBS strongly relies on

� This work has been partly supported by the EU FP6-2005-IST EU Project PLASTIC
(Providing Lightweight and Adaptable Service Technology for pervasive Information and
Communication) and by the national FIRB Project ART DECO (Adaptive InfRasTructures
for DECentralized Organizations).

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 124–139, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Monitoring Architectural Properties in Dynamic Component-Based Systems 125

the selection of the right architecture. Analysis techniques and tools have been intro-
duced for verifying and validating the architectural compliance to expected properties
(see, e.g., in [1,2]); however, most of them suppose the existence of a static architecture.

Due to the new requirement of dynamicity, components can be added and removed
at run-time so giving rise to dynamic, evolving, and unpredictable architectures, imple-
mented via middleware-based technologies, plugin-based infrastructures, or service ori-
ented paradigms. Therefore, the focus moves from validating the designed architectural
configuration to validating the changing over-time architecture. While in static archi-
tectures the verification can be done once and for all before deployment, for dynamic
architectures validation becomes a perpetual activity to be performed during system
execution.

This research work focusses on a specific type of dynamism: we consider dynam-
ically evolving CBSs in which, given a core set of architecturally connected black-
box components (hereafter referred as the kernel architecture), new components can
be plugged in at run-time (hereafter referred as run-time components). We propose the
MOSAICO (MOnitoring SA In COmponents) approach with two main goals: to verify
that a system derived by assembling black-box components satisfies certain architec-
tural properties, and to verify that by modifying some existing components or adding
new black box components dynamically, those original properties still hold.

The main contribution of this work consists in proposing the MOSAICO approach
(an its associated tool) to monitor dynamically evolving architectures while verifying
that interesting properties still hold on the modified CBS. While traditional approaches
focus on one-time analysis of static systems, MOSAICO focusses on perpetual analy-
sis of evolving systems. What the MOSAICO approach foresees hence is to first val-
idate the kernel architecture for compliance to some architectural properties, and then
to perpetually observe (through monitoring) the system execution and check weather
the dynamically evolving architecture continues to comply to the initially verified prop-
erties. The properties this paper will consider are scenario-based temporal properties,
identifying wanted/unwanted execution flows. Other types of properties, such as secu-
rity and performance, will be the subject of future work.

The next section provides a high-level introduction to the approach, while a detailed
description of the developed solution is presented in Section 3. Section 4 introduces the
NewsFeeder case study and applies the approach over it. Section 5 discusses related
work, while Section 6 concludes the paper and provides future research directions.

2 MOSAICO: A SA Property-Driven Monitoring Approach

The MOSAICO approach consists in monitoring the run-time execution of a dynami-
cally evolving CBS in order to analyze its perpetual compliance to selected properties.
This section provides a first glimpse on the approach, while details are provided in
Section 3.

1. Definition of the SA: In our approach we assume the availability of such specification
and base on it all the following steps. In our hypothesis the architecture describes the
relations among a set of components belonging to the kernel. At the same time, it
specifies how it is possible to dynamically extend the system at run-time.

www.manaraa.com

126 H. Muccini et al.

2. Definition of Relevant Architectural Properties: In this phase the engineer de-
fines which are the architectural properties that a real implementation of the system
must satisfy. Some of the properties could be verified statically on the SA defini-
tion, for instance by a model-checker. Nevertheless, the presence of black box com-
ponents should generally suggest to complement static verification with run-time
techniques. A simple example could be a certain communication pattern among
components that must hold at run-time.

3. Instrumentation and Monitoring: This step requires to put in place mechanisms
to monitor the flow of messages among the components. In general the term “mon-
itoring” refers to watching a system while it is running. This comprehends various
activities, as detailed below, and might become a quite critical and expensive pro-
cess 1.
First of all, the events to be observed at run-time so to check the defined prop-
erties must be identified. Then, the system needs to be instrumented accordingly
and monitored. In the MOSAICOapproach the instrumentation is carried on using
Aspect Oriented Programming (see Section 3.3 for detail). Nevertheless, other ap-
proaches are possible based for instance on the use of mechanisms provided by the
platform. It is worth noting that the presence of concurrent processes could make
the observation of message order tricky [4].

4. Definition of the Analyser Engine: This is the mechanism that reveals if a property
has been fulfilled or not. All the information collected must be reported to this
engine. In general not all the observed events are relevant for verification purpose,
as we discuss in 3.4. Clearly, if the analyser detects a violation, it should report it to
some recovery system that can bring the system back to a correct state or gracefully
stop it. This final step is certainly important but is outside the scope of the present
paper.

Through the described steps and the artifacts correspondingly derived, the MO-
SAICO approach perpetually re-iterating steps three and four permits to continuously
check the compliance of the system to the properties. In particular, whenever the archi-
tecture evolves as consequence of the insertion/removal of components, the approach
permits to immediately highlight violated properties.

The basic assumption of our approach is that it is possible to trace architectural com-
ponents to real components. Thanks to this assumption, it is possible to identify the
interfaces allowing for the cooperation among the real components in the implementa-
tion, and to trace such interactions back to the architectural definition. Figure 1 shows
our assumption on matching among architectural components (ACx in the picture) and
real components (Cx).

3 The Approach

We now detail each of the steps introduced in Section 2. In particular for each step we
describe techniques and tools that have been used and integrated to make some initial
experimentation with the proposed approach.

1 For a comprehensive survey on monitoring and related taxonomy we refer to [3].

www.manaraa.com

Monitoring Architectural Properties in Dynamic Component-Based Systems 127

Fig. 1. Extensible Architecture Example

3.1 SA Specification

Scope of this work is architectural validation of dynamically evolving CBS. As said,
we focus on extensible architectures composed by a kernel (some core components
representing the system skeleton) plus a few dynamically pluggable components (in the
specific, run-time evolving services).

In this context, the following development scenario is assumed: the specification of
the kernel architecture is available (as usually happens in plugin-based CBS or mid-
dleware) and implemented possibly through black-box components, while dynamically
pluggable components are black box (since produced and integrated by third parties)
and can interact with the kernel through precisely defined extension points. Figure 1
describes a plug-in based architecture and possible extension points. In the picture the
kernel part is specified by a precise description to which the real components and their
interactions can be mapped. The architecture specifies also the extension points, even if
the behaviour of the at run-time plugged components cannot be foreseen a priori.

3.2 Properties Specification

While architectural properties can be of various nature (e.g., security, reliability, perfor-
mance, usability and others [5]), within the context of this paper we deal with scenario-
based temporal properties, identifying how components are supposed to interact in
order to satisfy a pre-defined pattern or a needed service, by specifying wanted/
unwanted execution flows among architectural elements.

In order to model such properties, we make use of the Property Sequence Charts
(PSC) [6,7] notation, a scenario-based graphical language. PSC is an extended graph-
ical notation of a subset of UML2.0 sequence diagrams, which is used for specifying
the interaction between a collection of component instances that execute concurrently.
It has a formally defined syntax and semantics.

www.manaraa.com

128 H. Muccini et al.

In Figure 2 we show all the PSC graphical elements. Three types of special messages
can be specified: Regular, Required, and Fail. Regular messages (labeled with e:msg
name) constitute the precondition for a desired (or an undesired) interaction. Required
messages (labeled with r:msg name) must be exchanged by the system and are used
to express mandatory interactions. Fail messages (labeled with f:msg name) should
never be exchanged and are used to express undesired interactions. A strict operator is
used to explicitly specify a strict ordering between a pair of messages. A loose ordering,
instead, assumes any other messages can occur between the selected ones. Constraints
are introduced to define restrictions on what can happen between the message contain-
ing the constraint and its predecessor or successor. PSC also uses the parallel, loop,
simultaneous, complement operators for specifying parallel merge (i.e., interleaving),
iteration, simultaneity and complement (i.e., all possible messages but a specified one),
respectively.

We adopt PSC since it aims at balancing expressive power and simplicity of use, by
building on results and experience of existing valuable proposals in literature.

r:a

Required
message

e:a

Regular
message

f :a
Fail message

loop(x,y)

Loop operator

(C i.l1.C j,…, Ck.ln.Ct)

Constraint attribute

Simultaneous
operator

sim

...

par

...

Parallel operator

Strict
operator

PSC graphical elements PSC Example

e: ActivateService

C1 C2 C3

e: CreatePointToPoint

r: AckCreatePointToPoint

t0

t1

t2

t3

t4

C4

par

t5

r: AckSetParameters

b

b = {C1.DeactivateService.C2}

Fig. 2. The PSC Graphical Notation

3.3 The AOP Instrumentation and Monitoring Approach

As well known, Aspect Oriented Programming (AOP) is a programming paradigm im-
proving modularity. The main concepts in AOP are: cross-cutting concerns, aspects,
joint point, and weaving. A cross-cutting concern represents a feature which cannot be
located in a single component, but instead needs to be spread over a number of modules.
Thus, one concern can be spread through many objects, and one object can implement
many concerns. That means changing one module entails understanding all the tangled
concerns. A typical example is security: making a system secure requires to consider

www.manaraa.com

Monitoring Architectural Properties in Dynamic Component-Based Systems 129

security concerns all over the system implementation. An aspect is a crosscutting con-
cern, with the main goal of being transversal to the system structure. Through aspects,
crosscutting features can be created and automatically imported into the system, with-
out modifying existing modules. A joint point represents the locations where the aspect
is joined into the code, through a weaving process. A weaver is the engine which merges
together the aspect and the target application, according to the identified joint point. The
weaving process can be static (compile time) or dynamic (run-time).

Our approach employs AOP techniques for instrumentation. In particular, we use the
AspectJ language used for monitoring J2EE applications.

The process is shown in Figure 3 (rounded boxes represent algorithms and applica-
tions, irregular boxes represent artifacts, colored boxes represent algorithms or artifacts
developed by us).

In a property-driven monitoring approach based on SA definition, the identification
of the events to monitor is somehow straightforward. In order to validate the properties
at run-time we need to observe all the invocation that are “mentioned” at least in one
PSC. In turn PSCs are defined using messages defined in the interfaces of the architec-
tural components.

A parser application (written in Java) parses the PSC xml file so to identify those
objects and interfaces to be monitored (the PropertyParser box in Figure 3). The
ProfiledInput parser output contains information on which component/metho-
d/interface we are interested to monitor, as described in the PSC.

Next step consists in creating the aspect for monitoring the selected PSCs. For this
purpose, the AspectCreator takes in input the AspectTemplate file (a param-
eterized aspect written for monitoring purposes) and the profiled information, and pro-
duces the property-dependent aspect, by instantiating the AspectTemplate docu-
ment according to the PSCs. Joint points are identified according to the PSC docu-
ment and embedded in the aspect. The aspect is stored into a “.aj” file and succes-
sively compiled through the AspectJ compiler. The compiled aspects and the target
application are then weaved so to create an instrumented target application which al-
lows the system monitoring according to the identified properties. The monitoring sys-
tem is composed by a J2EE instrumented application. When it is run, the execution
of PSC components/methods/interfaces are collected and stored in a monitored traces
file.

Archi tectural
Proper ty

Proper ty
Parser

Profi led
Info

Aspect
Creator

Aspect
Template

Moni tor ing
Aspect

Aspect
Compi ler

AspectJ
Class files

Aspect Manager

Target
Appl icat ion

W e a v e r

Monitored Traces
in Charmy/PSC

Web Conta iner

Monitored Traces

Conver ter

Fig. 3. The MOSAICO AOP Approach

www.manaraa.com

130 H. Muccini et al.

3.4 The Analyzer Engine

On receiving the information from the instrumented system interfaces the Analyser
Engine must be able to verify at run-time if a property has been satisfied or not. The
derivation of such an engine, for the case of properties defined using PSC, is not easy. In
particular the analyzer must be able to check, for each notified event, if it is relevant in
the context of any defined property. Moreover in case of PSC specifying time constraints
it will be necessary to set up deadlines for the observation of an event.

The engine we developed takes in input all the PSC defining the properties to be
validated at run-time, and organises this information in suitable data structures. When
an event is notified, the following algorithm is followed:

1. the property database is searched looking for any property specifying that event as
the first event in a sequence.

2. for each property identified, a Property Validation Context (PVC) is opened. This
is a data structure that contains all the information concerning the next expected
events (or a set of it in case the alternative operator was specified) and the set of
events that should not be observed (in case at least a fail message is specified in the
sequence). PVCs are grouped according to the JVM threads that started it. In case
of events to be observed within a time frame a deadline is fixed. When the deadline
expires the event is considered not happened and in case of an expected event an
exception is raised.

3. for all PVCs already open and related to the thread whose ID is associated to the
notified event, the analyzer checks if the event is in the set of expected or forbidden
events. In the latter case, an exception is raised. An exception is also raised if the
next event expected in the PVC was specified using the “strict” operator and it does
not match with the notified one.

4. for all PVCs associated to the thread for which the event matches with the expected
one (or is in the set of expected one) the set of expected and denied events are
replaced with the new sets found in the next step of the related PSC. In case there
is no next event specified in the PSC the property has been satisfied and the PVC
is closed.

Using PSC it is also possible to specify a sequence of events that shall “not” be
observed. This case is treated in a dual way with respect to expected sequences. Dead-
lines are fixed for each next event in the sequence also in this case. Nevertheless, if
the deadline expires the corresponding PVC is deleted and no exception is raised.
Instead an exception is raised if the forbidden sequence until the last event is ob-
served.

The algorithm needs to consider also the case of sequences starting with two occur-
rences of the same event such as for instance aab. In this case, the algorithm shown
above will erroneously open a second PVC when the second a event is notified. Such
PVC will probably lead to an incorrect exception. To avoid this situation, additional
checks are added to the algorithm verifying that a PVC is not open for the same thread
on the same PSC.

www.manaraa.com

Monitoring Architectural Properties in Dynamic Component-Based Systems 131

4 The NewsFeeder Case Study

The NewsFeeder case study consists of a Web application which manages a newsletter.
Such newsletter makes use of the Feed Rss web formats used to publish frequently
updated digital content, such as blogs, news feeds or podcasts.

As in a traditional newsletter, three are the main system actors: a generic user, who
can access the feed Rss archive and see the list of available web services; a newsfeeder,
who can create his profile, add up to six Rss feeds, change its data, search info on
the db; an administrator, who can add and remove feeds, manage feed categories, and
users. As soon as an Rss feed is inserted, it is parsed and validated. If valid, an Rss feed
preview is created through an XSLT file and visualized on a web browser. Rss feed are
aggregated according to user profiles, and thanks to the Formatting Objects (XSL-FO)
a pdf file is created and sent to the user.

Daily, the system updates the Rss feeds with the daily news in the db, creates the
pdf file for each existing profile and send it to all the newsfeeder who created their own
profile. In such a way, each newsfeeder daily receives an email with attached the news
conforming with its profile.

New services can be dynamically added to the NewsFeeder system.

4.1 The NewsFeeder Software Architecture Specification

The NewsFeeder is implemented through the J2EE framework. This application is
three-tiered, composed by a Client tier (the presentation layer), a Middle tier (con-
taining the business logic), and a Data tier (the database). The NewsFeeder application
resides on the middle tier and is composed by three (main) layers, as shown in Figure 4.

The Presentation Layer is responsible of the presentation logic. It includes three main
components: the CommonActions implements generic actions; the
NewsFeederAction implements the actions associated to the newsfeeder (profile
management, feed addition to the selected profile, personal data management); the
AdminActions includes the actions associated to the administrative area (e.g., feed
management, feed categories management). The Transformation component in-
cludes features for feed validation, and preview and pdf file creation. The Presentation
Layer controller is implemented through STRUTS, while the GUI is implemented via
JSP.

The Business Layer is responsible of implementing the computational features. The
BusinessFactory abstract class acts as a bridge between the presentation and
the business layers. At deployment time, an instance of this class is created. At each
time a request to the business layer arrives, the Factory component creates a new
NewsFeederDelegate or FeedDelegate components. Such delegate compo-
nents access the database through Data Access Object (DAO) objects. The Business
Layer is implemented through POJOs business services.

The Integration Layer is responsible for the database connection. The NewsFeed-
erDAO and FeedDAO components take the data from the DB, and create a Transfer
Objet (TO) component depending on the resulting data. The TOs components provide
data to respond to the presentation layer actions. The Integration Layer uses JDBC
library to connect the Business tier with the Data tiers.

www.manaraa.com

132 H. Muccini et al.

GUI

FeedService
FeedService

<<STRUTS>>
Presentation Layer

Run-time
Compnents

Common
Action

NewsFeeder
Action

Admin
Action

Factory

FeedDelegate
POJOs

NewsFeeder
DAO FeedDAO

NewsFeederDAO FeedDAO

FeedDelegate

Transfer
Object

ValidatorService

NewsFeeder
DelegatePOJOs

NewsFeederDelegate

MIDDLE TIER

CLIENT TIER

Browser
(html

javascript)

Web
Services

DATABASE

Business
Layer

Integration
Layer

Trasformation
Validation

BusinessFactory

Validation
Service

Extension
Layer

BusinessExtensionIn

BusinessExtensionOut

PresentationExtensionOut

PresentationExtensionIn

IntegrationExtensionOut

IntegrationExtensionIn

Fig. 4. The NewsFeeder Case Study Kernel Architecture and Run-time Components

The NewsFeeder Architecture Dynamicity. The NewsFeeder architecture is exten-
sible at run-time through the addition or modification of run-time components. Such
components reside on the Run-time Components layer and can be attached to the kernel
architecture through the extension points depicted in Figure 4. In the web application we
are taking into consideration, two are the black box components we added at run-time:
one implementing the Rss feed validation feature (ValidationServices), and the
Rss feed search and visualization features (FeedServices). In order to make some
further monitoring analysis, we also added a mutated faulty version of the validation
web service, referred in the following as BadValidationServices.

Tool Support. The software architecture specification of the NewsFeeder application
has been modeled inside the Charmy framework [8]. Charmy allows the specification
of the SA topology in terms of components, connectors and relationships among them,
using a UML-based notation (stereotyped class diagrams for the topology and state
diagrams for the behavior). The internal behavior of each component is specified in
terms of state machines. Once the SA specification is available, a formal executable
prototype in Promela [9] can be automatically generated.

www.manaraa.com

Monitoring Architectural Properties in Dynamic Component-Based Systems 133

4.2 The NewsFeeder Properties Specification

Two are the main classes of properties we are interested to monitor in this paper:
Pattern-oriented properties, and Feature-oriented properties.

A J2EE application can make use of several patterns: Model View Controller, Single-
ton, Factory, Business delegate, Transfer Object, and Data Transfer Object [10]. Each
of them imposes constraints on how component (types) can be assembled and on how
they can communicate.

By considering the NewsFeeder application, we focussed mainly on two patterns:
the Factory and Data Transfer Object patterns. The Factory pattern deals with the prob-
lem of creating components’ objects2 without specifying the exact class or object that
will be created. This pattern helps to model an interface for creating a component ob-
ject which at creation time can let its subclasses decide which class to instantiate. The
Data Transfer Object pattern manages the connection to the database and creates the
“transfer” serializable object to maintain data received by the database. We defined two
pattern-oriented properties (POP) out of those two patterns.

POP1 Direct access to a POJO object (unwanted): according to the factory pattern,
the Business Layer can be accessed only through the creation of a factory class.
In the NewsFeeder architecture, this property is expressed by saying that in or-
der to access the Business Layer, (see Figure 4, Middle Tier, Business Layer),
an instance of the BusinessFactory class must be retrieved, and the imple-
mentation of this object creates a delegate object responsible for making visible
the business layer public interfaces. What the property denies is the direct ac-
cess to a POJO (delegate) object (i.e., NewsFeederDelegatePOJOs and
FeedDelegatePOJO), without making a call to the BusinessFactory
(in conformance to the Factory pattern).

POP2 DAO object creation (unwanted): according to the Data Transfer Object pattern,
the creation of a DAO object (to make the system connecting to the database)
has to be done by a POJO object. In the NewsFeeder study, when the appli-
cation is deployed, it has to create an instance of the BusinessFactory so to
identify the location of the data source. The NewsFeederDAO and FeedDAO
DAO objects have to be created by the NewsFeederDelegatePOJOs and
FeedDelegatePOJO objects, respectively (see Figure 4). The property we
defined negates the possibility of creating a DAO object from an invalid data
source (in conformance to the Data Transfer Object pattern).

The implementation of a certain feature, requires the interaction among different
components, and may require the satisfiability of different patterns. We analyzed three
different feature-oriented properties (FOP).

FOP1 Business service creation feature: this property specifies that, when a client
makes a service creation request to the system, the system executes the re-
quired service and returns the result to the user. In the NewsFeeder system,
when a client makes a service request, the STRUTS controller links such a re-
quest into an action, which calls an instance of the BusinessFactory. The

2 Hereafter we refer to objects as instances of components’ classes.

www.manaraa.com

134 H. Muccini et al.

BusinessFactory through the Factory component creates a delegate ob-
ject, which makes the service available to the action. The action executes that
service and returns the result to the user. This feature requires the application of
four different patterns (Factory, Singleton, Business delegate, and Model View
Controller) and is activated by a user action;

FOP2 Web service request features: this property specifies that, when a client wants to
open a connection with the server, the system elaborates its request and even-
tually returns a SOAP message. In the NewsFeeder architecture, a client web
service creates a new ServiceLocator (in the Client Tier) that opens a new con-
nection with the server. At the same time the ServiceLocator creates a stub that
will manage the connection for the client. At this point the service client starts
interacting with the server using SOAP messages. To satisfy incoming services
requests from the client the server creates an instance of the BusinnesFactory
and through the Factory component creates a delegate object which satisfies
those requests. Finally a SOAP message is sent back to the client.

FOP3 Remote validation service feature: as in the description above the client service
creates a ServiceLocator (in the Client Tier) that creates a stub to interact with
the server. Using the connection an URL is sent to the server. The server parses
the stream of that URL, validates it, and creates a report which is sent back to
the system, and then to administrators through a dedicated news feeder.

Tool Support. PSC is implemented as a Charmy plugin. An example on how property
POP1 looks like is shown in Figure 5.

Fig. 5. The POP 1 PSC Specification

4.3 The NewsFeeder Instrumentation and Monitoring

Input to the AOP instrumentation and monitoring approach are a set of architectural
properties (specified in PSC) and the target application. According to what introduced
in Section 3.3 and summarized in Figure 3, five are the main steps to be applied over
the given inputs: i) property parsing, ii) aspect creation, iii) aspect compilation, iv)

www.manaraa.com

Monitoring Architectural Properties in Dynamic Component-Based Systems 135

weaving, v) system execution and trace capture, vi) monitored trace conversion to PSC.
Being steps iii), iv) and v) realized through traditional AOP technologies and tools, we
here focus on the application of the complementary steps.

During property parsing, the XML representation of the five selected PSC properties
are parsed so to obtain the list of messages and components to be monitored.

The aspect template we built for monitoring purposes is then instantiated with the
information coming from the profiled information document. The aspect template file
is a 123 lines of Java code, extending the AspectWriter class. It accepts one vector
parameter (containing the result of the property parsing) and contains mostly println
commands to store information on executed methods or interfaces. The output of the
aspect creator process automatically generates an aspect (public aspect Tracer{...}).
The AspectJ weaving process allows the creation of an instrumented J2EE application
to be run.

When running the instrumented application, execution traces are captured, according
to what of interest from the PSC properties. A monitored trace lists the all instrumented
methods covered during system execution.

Monitoring the NewsFeeder Architecture Dynamicity. Being the NewsFeeder a dy-
namic system, it allows the addition of new components at run-time. While the previous
step monitored the kernel architecture compliance to selected properties, the AOP mon-
itoring system needs to keep working in perpetual way to monitor the run-time chang-
ing architecture. In our experiment, three components have been dynamically added to
the kernel architecture: the ValidationServices, the FeedServices, and the
faulty BadValidationServices components (the first two are shown in Figure 4).

To monitor dynamically evolving CBS, instead of static systems, we need to watch
constantly the interfaces from the kernel to the external world (i.e., the extension points
used for attaching plugins at run-time). This requires a small change to the property
parser and introduces a small monitoring overhead, but gives a great flexibility to the
monitoring system. Since the monitoring system captures any call going through the
extension points, any call made by the added plugin is monitored without needing to
change or even re-start the instrumented target application. In the specific case of the
NewFeeder application, we monitor since the beginning the interfaces in the Extension
Layer.

In case new properties need to be monitored after a run-time component is added,
the Property Parser is launched again (to identify the new events to be monitored), the
Aspect Creator creates the new monitoring aspect (taking into consideration the new
events), which is successively compiled and weaved together with the target application.
So far, this process requires to shut down and restart the application. This is due to a
technical restriction of AspectJ, which does not allow run-time weaving.

In summary, the run-time addition of a black box component to the kernel architec-
ture does not require any change to the monitoring system. At any time a new compo-
nent is added, the monitoring system is transparent to the user, who can continue its
execution without interrupts. In other terms and considering other classes of properties,
e.g. security, the user can continue executing the updated system, while the software
security policies are still verified.

www.manaraa.com

136 H. Muccini et al.

Tool Support. Three are the main modules we developed in order to automatize the
AOP instrumentation and monitoring process: a property parser, an aspect creator, and
a converter (as shown in Figure 3). The property parser extracts from the PSC XML
representation information on components, methods or interfaces which must be mon-
itored, according to the property under analysis. The aspect creator takes the property
parser input and uses it for instantiating an aspect template. The converter tool shows
the execution traces as sequence diagrams inside the Charmy framework.

4.4 The NewsFeeder Analyzer Engine

Next step in the MOSAICO approach is the analysis of the deployed system to ver-
ify that it conforms to the architectural specification. This last step also provides the
opportunity of verifying that MOSAICO works as expected, correctly identifying at
run-time the violation of specified properties.

In order to test MOSAICO we used then a mutated version of the various News-
feeder components. In particular, we inserted in the mutated components some inter-
actions breaking the rules defined by the various patterns, for which properties were
defined as illustrated in subsection 4.2.

Particularly interesting are properties related to the interactions involving compo-
nents added at run-time to the system. For instance with reference to POP1 we inserted
a FeedService component that directly accessed an existing POJO instance, which refer-
ence was provided by an external component, without first calling the BussinessFactory
component instance. In this case MOSAICO correctly reported the violation having
observed an invocation to the POJO from a component which did not invoke the Busi-
nessFactory before. Clearly, though the approach seems to provide promising results,
its validation as exposed here is still preliminary, and we plan to carry on more formal
experimentation.

Tool Support. During run-time analysis the algorithm described in Section 3.4 is ap-
plied. In the real implementation the events are not directly notified by the probes in-
serted by the aspects. Instead, they are retrieved monitoring the different files in which
the events are logged using the inotify Linux file system event-monitoring mechanism,
that permits to be alerted when a line to file is inserted. Using the information stored
in these files it is possible to reconstruct the execution traces. In particular, the infor-
mation stored in the file concern the package and the object type receiving the method
invocation, and the thread ID to which the invocation belongs.

5 Related Work

Many papers are related to the topic of monitoring and specifically Aspect Oriented
monitoring. The distinguishing contribution of this work is the focus on architectural
properties in monitoring of CBSs. In the following a set of approaches and tools are
overviewed with respect to their objective and supporting technology.
AOP monitoring of CBSs:

In [11] Kiviluoma and coauthors describe an approach for the run-time monitoring
of what they call the architecturally significant behaviors. A UML profile is utilized

www.manaraa.com

Monitoring Architectural Properties in Dynamic Component-Based Systems 137

to specify the system. The behavioral profile consists of three stereotyped elements:
<<ClassRole>> defines the participants role (e.g. Client e Server), <<OperationRo-
le>> defines the operations of a ClassRole, and <<AttributeRole>> defines the at-
tributes of roles. The behavioral role together with a model which maps roles to classes
in the target application are utilized for creating AspectJ aspects successively weaved
inside the target application. The target application is then run and differences among
the modeled system and the one under execution are captured.

Java Logical Observer (JLO) [12] makes use of aspects for the verification of tempo-
ral assertions at run-time. In JLO, temporal properties are specified in LTL and inserted
into java bytecode through Java 5.0 annotations. Successively, the annotated Java code
is compiled and the resulting bytecode is inputted to the JLO tool which creates the as-
pects and verifies at run-time properties previously identified. Differently from our ap-
proach, JLO requires to annotate Java code, thus assuming code availability. Moreover,
it cannot be considered a monitoring approach, rather a way to reason about behavior
at run-time.

In [13] Xiaoguang et May introduce a framework for integration testing of compo-
nent-based systems using aspect oriented technologies. Aspects are used for introducing
testing-related cross cutting concerns to black box components. Collaboration and in-
teraction among components are monitored using AspecJ. Similarly to our approach,
execution traces are collected through monitoring, even if for different purposes.

The Reverse Engineering tool ARE [14] permits a dynamic analysis of Java code
and uses AspectJ for creating execution traces. The tool permits to improve the dy-
namic analysis of a target application, by capturing and successively analyzing execu-
tion traces. Differently from our approach, it is not architectural and focusses on Java
code, instead of CBSs.

The Glassbox Ispector [15] is an application monitor which combines AspectJ and
the Java Management Extensions for performance tracing by extracting execution traces;
Bugdel [16] is an Eclipse plug-in for Java applications debugging which allows the def-
inition of aspects in a easy way, through a wizard procedure which hides some of the
AOP complexity. Katz [17] introduces an approach for automatically verifying wether
an aspect can introduce an unexpected problem in the original target application.

Analysis of Dynamic architectures
Software architectures may change over time, due to the need to provide a more de-
pendable system, the need to remove identified deficiencies, or the need to handle
dynamically-evolving collections of components at run-time [18].

Some research has investigated SA evolution, especially at run-time. In [19] the
authors analyze how an architecture may change at run-time (in terms of component
addition, component removal, component replacement, and run-time reconfiguration)
and how tool suites may be used to cope with such evolution. In [20] the authors de-
scribe an approach to specify architectures that permits the representation and analysis
of dynamic architectures. In [21] the authors analyze the issues of dynamic changes
to a software configuration, in terms of component creation and deletion, and connec-
tion and disconnection. The CBabel (Building applications by Evolution with Connec-
tors) architectural language allows the specification of dynamic architectures supporting

www.manaraa.com

138 H. Muccini et al.

reconfiguration [22]. CBabel makes use of the Maude model checker so to model-check
LTL properties.

6 Conclusions and Future Work

Component-based systems are becoming self-adaptable, self-reconfiguring, and their
architecture evolves at run-time. Pre-deployment validation techniques become inade-
quate in this dynamic context and must be complemented with run-time perpetual vali-
dation techniques. This paper has proposed the MOSAICOapproach (and its associated
tool) for validating wether CBSs maintain the compliance to some architectural proper-
ties when subject to dynamic evolution. The dynamically evolving system is perpetually
monitored for identifying unforeseen errors introduced while adding, modifying or re-
moving components.

Manifold are the directions for future work.
The performance of the monitoring system needs to be carefully analyzed. This is an

ongoing activity which is requiring the MOSAICO application to different systems.
The monitored properties can be of various nature, as outlined in Section 3. While

this paper has focussed on component integration properties, in future work we are
planning to extend the set of properties including also security and architectural style
related properties.

As shown, the approach yields ample room for the development of automatic sup-
port. This paper has shown a set of tools supporting some of the steps foreseen by
MOSAICO, nevertheless some of these steps are still carried on manually, like the
manual elicitation of properties.

So far, the Analyzer Engine permits to validate the conformance among the mon-
itored trace and the expected property. The definition of failure localization, recovery
and repairing mechanisms in terms of the notifications raised by the analyzer has not
been considered.

Finally, this paper has taken into consideration a static architecture capable of evolv-
ing at run-time. The kernel architecture is a known assembly of components (typically
black box), and run-time components can be added. In a purely dynamic architecture,
instead, a kernel is designed so to only provide routing features (e.g., like in Peer to Peer
architectures) and the architectural configuration is created and evolves at run-time. We
are investigating how our approach can be extended to deal with such situation.

References

1. Muccini, H., Hierons, R. (eds.): ROSATEA 2006: The Role Of Software Architecture in
Testing and Analysis. ACM Digital Library. ACM Press, New York (2006)

2. QOSA Conferences on the Quality of Software Architectures, Lecture Notes on Computer
Science (2005-2007)

3. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-fault
monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (2004)

4. Bertolino, A., Muccini, H., Polini, A.: Architectural verification of black-box component-
based systems. In: RISE2006. Proc. Int. Workshop on Rapid Integration of Software Engi-
neering techniques, vol. to appear as LNCS (2006)

www.manaraa.com

Monitoring Architectural Properties in Dynamic Component-Based Systems 139

5. Kazman, R., Abowd, G., Bass, L., Clements, P.: Scenario-based analysis of software archi-
tecture. IEEE Softw. 13(6), 47–55 (1996)

6. Autili, M., Inverardi, P., Pelliccione, P.: A scenario based notation for specifying temporal
properties. In: SCESM’06, Shanghai, China, May 27, 2006, ACM Press, New York (2006)

7. PSC home page: http://www.di.univaq.it/psc2ba (2005)
8. CHARMY Project. Charmy Web Site. (http://www.di.univaq.it/charmy)
9. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley,

Reading (2003)
10. Crawford, W.C., Kaplan, J.: J2EE Design Patterns. O’Reilly (2003)
11. Kiviluoma, K., Koskinen, J., Mikkonen, T.: Run-time monitoring of architecturally signifi-

cant behaviors using behavioral profiles and aspects. In: ISSTA’06. Proc. Int. Symposium on
Software Testing and Analysis, Portland, Maine, pp. 181–190 (2006)

12. Bodden, E.: A lightweight ltl runtime verification tool for java. In: Companion to the 19th
annual ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications, pp. 306–307. ACM Press, New York (2004)

13. Xiaoguang, M., May, J.: A framework of integration Testing using AspectJ. In: WAOSD. Int.
Workshop on Aspect-Oriented Software Development, Beijing, China (2004)

14. Gschwind, T., Oberleitner, J.: Improving dynamic data analysis with aspect-oriented pro-
gramming. In: CSMR ’03. Proc. 7th European Conference on Software Maintenance and
Reengineering, Washington, DC, p. 259. IEEE Computer Society Press, Los Alamitos (2003)

15. Bodkin, R.: AOP@Work: Performance monitoring with AspectJ (September 2005)
IBM: http://www-128.ibm.com/developerworks/java/library/
j-aopwork10/

16. Usui, Y., Chiba, S.: Bugdel: An aspect-oriented debugging system. In: APSEC ’05. Proc.
12th Asia-Pacific Software Engineering Conference, Washington, DC, pp. 790–795. IEEE
Computer Society Press, Los Alamitos (2005)

17. Katz, S.: Diagnosis of Harmful Aspects Using Regression Verification. In: FOAL workshop
in AOSD 2004 (2004)

18. Garlan, D.: Software Architecture: a Roadmap. In: Finkelstein, A. (ed.) ACM ICSE 2000,
The Future of Software Engineering, pp. 91–101. ACM Press, New York (2000)

19. Oreizy, P., Medvidovic, N., Taylor, R.: Architecture-Based Runtime Software Evolution. In:
ICSE 98. Proc. Int. Conf. on Software Engineering, Kyoto, Japan (1998)

20. Allen, R.J., Douence, R., Garlan, D.: Specifying and Analyzing Dynamic Software Archi-
tectures. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, Springer,
Heidelberg (1998)

21. Kramer, J., Magee, J.: Analysing Dynamic Change in Software Architectures: A case study.
In: Proc. 4th IEEE Int. Conf. on Configurable Distributed Systems, IEEE Computer Society
Press, Los Alamitos (1998)

22. Rademake, A., Braga, C., Sztajnberg, A.: A rewriting semantics for a software architecture
description language. ENTCS 130, 345–377 (2005)

http://www.di.univaq.it/psc2ba
http://www.di.univaq.it/charmy
http://www-128.ibm.com/developerworks/java/library/j-aopwork10/
http://www-128.ibm.com/developerworks/java/library/j-aopwork10/

www.manaraa.com

A Modeling Approach to Analyze the Impact of Error
Propagation on Reliability of Component-Based

Systems�

Vittorio Cortellessa1 and Vincenzo Grassi2

1 Dipartimento di Informatica, Universita’ dell’Aquila
cortelle@di.univaq.it

2 Dipartimento di Informatica Sistemi e Produzione, Universita’ di Roma “Torvergata”
vgrassi@info.uniroma2.it

Abstract. We present a novel approach to the analysis of the reliability of a
component-based system that takes into account an important architectural at-
tribute, namely the error propagation probability. This is the probability that an
error, arising somewhere in the system, propagates to other components, possibly
up to the system output. As we show in the paper, this attribute may heavily af-
fect decisions on crucial architectural choices. Nonetheless, it is often neglected
in modeling the reliability of component-based systems. Our modeling approach
provides a useful support to the reliability engineering of component-based sys-
tems, since it can be used to drive several significant tasks, such as: (i) placing
error detection and recovery mechanisms, (ii) focusing the design, implemen-
tation and selection efforts on critical components, (iii) devising cost-effective
testing strategies. We illustrate the approach on an ATM example system.

Keywords: component-based systems, reliability, state-based model.

1 Introduction

Emerging paradigms of software development, like component-based software engi-
neering and COTS-based software development, stress the idea of building a software
system as an assembly of pre-existing and newly developed components.

Assessing the quality (with respect to both functional and non functional properties)
of such systems is not straightforward, as it can depend in non trivial ways on the
quality of their components and on how they are assembled. In this paper, we focus on
reliability, defined as a probabilistic measure of the system ability to successfully carry
out its own task as specified, and provide a modeling approach for reliability analysis.
Our approach exploits information about the reliability properties of each component,
as well as architectural information about how components are assembled. Using this
information, we show how to get an estimate of the overall system reliability and of its
sensitivity with respect to variations in the reliability properties of its components.

� This work has been partially supported by the PLASTIC project (EC 6th Framework Pro-
gramme). http://www.ist-plastic.org

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 140–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

A Modeling Approach to Analyze the Impact of Error Propagation 141

Being model-based, our approach can be used to perform early reliability analysis,
thus driving the actual system implementation. It can be used for ”what if” experiments
to predict the impact of architectural changes needed to adapt the system to new or
changing requirements. In particular, the sensitivity analysis supported by our approach
provides useful insights for system design, development and testing. Indeed, it can be
used to drive the placement of error detection and recovery mechanisms in the system.
Moreover, from the viewpoint of project and resource management, it can be used to
convey consistent project resources on the most critical components (i.e. the ones with
the highest sensitivity). It can also be used to focus the testing efforts on those com-
ponents where a small change in the failure characteristics may lead to considerable
variations in the overall system reliability.

Architecture-based analytic approaches to the reliability analysis of component-based
systems have been already presented in the literature (see Section 2.3). The main nov-
elty of our work, that distinguishes it from most of the existing analytic approaches,
consists in taking into account an important architectural aspect, namely the error prop-
agation from component to component. As the results of our experiments show, ne-
glecting this aspect may lead, at the best, to overly pessimistic predictions of the system
reliability, that could cause unnecessary design and implementation efforts to improve
it. Worse yet, if reliability analysis is used to drive the selection of components, it could
lead to wrong estimates of the reliability of different component assemblies, thus caus-
ing the selection of an assembly which is actually less reliable than others.

The paper is organized as follows. In section 2 we first provide a brief overview
of basic reliability concepts, then we introduce our component-based system failure
model, and finally we review related work on reliability analysis of component-based
systems. In section 3 we present our approach to the reliability analysis of component-
based systems and provide an analytic solution for the reliability estimate that takes
into account the error propagation probabilities. Based on the results of section 3, we
provide in section 4 analytic solutions for the sensitivity of the system reliability with
respect to the reliability properties of each component. In section 5 we apply our results
to an example of Automated Teller Machine (ATM) and show the relevance of the
newly introduced parameters. Finally, we draw some conclusions and give hints for
future work in section 6.

2 Background

2.1 Basic Concepts

According to [3], a failure consists in the deviation of the service provided by a system
from the correct service. An error is the part of the system state that leads to the occur-
rence of a failure, and is caused by a fault. However, not all faults cause an error, and
not all errors lead to a failure. For example, a bug in the code that implements a soft-
ware component is an internal fault that causes an error in the component internal state
only if that code is actually executed. This error leads to the occurrence of a compo-
nent failure only if it reaches the interface of the component (this might not happen, for
example, if the error is overwritten by other internal computations). In turn, a compo-
nent failure does not necessarily implies a failure of a system consisting of an assembly

www.manaraa.com

142 V. Cortellessa and V. Grassi

internal
fault

activation
error error error

component i component j

system component
interface

system
interface

propagation

status
of component i

status
of component j

input
error

correct service component i
failure

incorrect service

correct service
(system)
failure

incorrect service

Fig. 1. Error propagation in a component assembly

of components. A system failure occurs only if the generated error propagates through
other components up to the external interface of the system. Figure 1 exemplifies this
propagation chain [3].

From this brief discussion it emerges that the reliability of a component-based sys-
tem, defined as the probability that no system failure occurs, strongly depends on the
following factors:

– the internal failure probability of each component, that is the probability that the
component generates a failure caused by some internal fault;

– the error propagation probability of each component, that is the probability that the
component propagates to its output interface an erroneous input it has received;

– the propagation path probability of the component assembly, that is the probability
of each possible error propagation path from a component up to the system output.

The former two factors are intrinsic characteristics of each component taken in iso-
lation. The latter factor instead depends on the system architecture, i.e. on the topology
of the component connections and the likelihood of possible component interaction
patterns.

None of these factors should be neglected to get a significant estimate of the relia-
bility of a component-based system. However, most of the existing analytic approaches
(see section 2.3) do not consider the error propagation factor.

2.2 Component-Based System Failure Model

In Figure 2 we give a visual representation of our component-based system failure
model, along with the parameters involved in the computation of the system reliabil-
ity that is denoted in figure as REL.

In our model we consider an application consisting of C interacting components.
Each interaction corresponds to a control transfer from a component i to a component
j, that also involves the transfer to j of some data produced by i. In [24] the distinction
between data flow and control flow is discussed with respect to the integration of module

www.manaraa.com

A Modeling Approach to Analyze the Impact of Error Propagation 143

Ci

ep(i)

intf(i)

Cj

ep(j)

intf(j)

p(i,j)

REL

Fig. 2. The component-based system failure model and its parameters

and system performance. In our approach, we do not distinguish the two aspects, and
we assume that data errors always propagate through the control flow [11].

We assume that the operational profile of each component i is known, and it follows
the Markov property. Hence, it is expressed by the probabilities p(i, j) (1 ≤ i, j ≤ C)
that, given an interaction originating from i, it is addressed to component j [12,29]. It
holds the obvious constraint that (∀i)

∑
j p(i, j) = 1. Self-transitions are not forbidden

in our model, namely it may occur that p(i, i) �= 0.
Besides its operational profile, each component i is also characterized by its internal

failure probability intf(i). intf(i) is the probability that, given a correct input, a failure
occurs during the execution of i causing the production of an erroneous output. In this
definition, “erroneous” refers to the input/output specification of i taken in isolation.
intf(i) can be interpreted as the probability of component failure per demand [12].

However, the occurrence of a failure within a component does not necessarily af-
fect the application ability of producing correct results as outlined in Section 2.1. To
take into account this effect, we introduce in our failure model the additional param-
eter ep(i), that denotes the error propagation probability of component i, that is the
probability that i does not mask but rather propagates to its output a received erroneous
input.

We assume that intf(i) and ep(i) are independent of each other. This is in accor-
dance with the literature on the analysis of the error propagation characteristics of a
system, where this aspect is considered independently from the reliability of each sys-
tem component (see, for example, [1,15]). We point out that, as a consequence of this
independence assumption, ep(i) < 1 for some component i implies an increase of the
system reliability with respect to the case ep(i) = 1, as in the former case there is a
non-zero probability that i does mask an error received from other components.

2.3 Related Work

A crucial element in any model-based approach to reliability analysis is the meaning-
ful estimate of the model parameters. As it can be argued from the above discussion,
these parameters concern the internal failure and error propagation probabilities for
each component, and the probability of each possible propagation path. In the follow-
ing, we first review proposed methodologies for their estimate. Then, we review exist-
ing architecture-based analytic approaches to reliability analysis of component-based
systems.

www.manaraa.com

144 V. Cortellessa and V. Grassi

An interesting classification of potential sources of data that may be relevant for
reliability estimation of software architectures can be found in [25]. Four classes of
sources are defined, two for newly developed software and two for reused software.

Methods for the estimate of the probability of failure of a single component are
extensively reviewed in [12], and have been also reviewed in [11]. Hence, we refer to
those papers for a wide discussion on this issue.

With regard to estimate of the error propagation probability for each single compo-
nent, relevant work has been recently presented in [1,15]. In [15] an error permeability
parameter of a software module is defined, which is a measure providing insights on
the error propagation characteristics of the module. A methodology is devised to ex-
tract this parameter from an existing software system through fault injection. In [1] an
analytical formula for the estimate of the error propagation probability between two
components is provided. This estimate derives from an entropy-based metrics, which
basically depends on the frequencies of component interactions and the injectivity de-
gree of the function calculated by each component. Another approach based on fault
injection to estimate the error propagation characteristics of a software system during
testing was presented in [26,27].

With regard to the estimate of the propagation path probabilities, the basic infor-
mation exploited by all the architecture-based methodologies is the probability that
component i directly interacts with component j. At early design stages, where only
models of the system are available, this information can be derived from software arti-
facts (e.g. UML interaction diagrams), possibly annotated with probabilistic data about
the possible execution and interaction patterns [8].

A review and discussion of methodologies for the interaction probability estimate
can be found in [11,12]. A more recent method has been discussed in [23], where a
Hidden Markov model is used to cope with the imperfect knowledge about the compo-
nent behavior.

Once the interaction probabilities are known, the probability of the different error
propagation paths can be estimated under the assumption that errors propagate through
component interactions. According to the classification proposed in [12], most of the
existing approaches can be broadly categorized as: (i) path-based models, where the
probability of the possible component execution paths is explicitly considered; (ii) state-
based models, where probabilistic control flow graphs are used to model the usage
patterns of components.

These two types of approaches are conceptually quite similar. One of the main dif-
ferences between them emerges when the control flow graph of the application contains
loops. State-based models analytically account for the infinite number of paths that
might exist due to loops. Path-based models require instead an explicit enumeration
of the considered paths; hence, to avoid an infinite enumeration, the number of paths
is restricted in some way, for example to the ones observed experimentally during the
testing phase or by limiting the depth traversal of each path. In this respect, we adopt
here a state-based model.

Moving to the analysis of the overall system reliability, a thorough review of ex-
isting model-based approaches can be found in [12], whereas a more recent approach
appeared in [22]. However, albeit error propagation is an important element in the chain

www.manaraa.com

A Modeling Approach to Analyze the Impact of Error Propagation 145

that leads to a system failure, all existing approaches ignore it. In these approaches, the
only considered parameters are the internal failure probability of each component and
the interaction probabilities, with the underlying assumption that any error that arises in
a component immediately manifest itself as an application failure, or equivalently that
it always propagates (i.e. with probability one) up to the application outputs.

Only few paper have considered the error propagation problem within a system-level
reliability model. In [15] an experimental approach to the analysis of the system reli-
ability is presented, based on the monitoring of the error propagation phenomena in
deployed systems. At the best of our knowledge, the only analytical model for reliabil-
ity analysis of component-based systems that considers the error propagation has been
presented in [21]. In this model it is assumed that each error arising within a compo-
nent always causes a system failure and, at the same time, it can also propagate to other
components affecting their failure probability. In our opinion this failure model, based
on the contemporary assumption of immediate failure and propagation to other compo-
nents, deserves further investigation about its soundness. Indeed, the immediate failure
assumption seems to make irrelevant (or contradictory) to reason about the propagation
of errors to other components. The model we present in section 3 is based on a different
assumption.

An important advantage of architectural analysis of reliability is the possibility of
studying the sensitivity of the system reliability to the reliability of each component, as
said in the Introduction. Although this advantage is widely recognized [11,19,28], few
model-based approaches for computing the sensitivity of the system reliability with
respect to each component reliability have been developed [6,10]. A basic work for
the sensitivity analysis of the reliability with respect to some system parameter was
presented in [5], but it does not address specifically architectural issues. Moreover, all
these models do not take into account the error propagation attribute.

With respect to the existing literature, the original contributions of this paper can be
summarized as follows:

– We define a state-based architectural model for the analysis of reliability, where the
error propagation factor is taken into account, and derive an analytic solution for
the reliability evaluation.

– We derive analytic expressions for the evaluation of reliability sensitivity with re-
spect to the error propagation and the failure probability of each component.

– The above modeling results can be exploited in component-based development
processes to place error detection and recovery mechanisms, to focus the design,
implementation and selection efforts on critical components, and to devise cost-
effective testing strategies.

3 Embedding the Error Propagation in a Reliability Model

In this section we provide the mathematical foundations of our model, and in the fol-
lowing section we perform a sensitivity analysis with respect to the model parameters.

The operational profile of a component-based software application is expressed by
a matrix P = [p(i, j)], (0 ≤ i, j ≤ C + 1), where each entry p(i, j) represents the

www.manaraa.com

146 V. Cortellessa and V. Grassi

probability that component i, during its execution, transfers the control to component
j. The rows 0 and C +1 of P correspond to two “fictitious” components that represent,
respectively, the entry point and the exit point of the application [29]. These components
allow to easily model: (i) the stochastic uncertainty among application entry points, by
means of p(0, j) probabilities (0 ≤ j ≤ C), (ii) the completion of the application by
means of the first control transfer to component C + 1.

Given this model, the application dynamics corresponds to a discrete time Markov
process with state transition probability matrix P, where the process state i represents
the execution of the component i, and state C +1 is an absorbing state. Figure 3 depicts
the structure of P, where Q is a (C + 1) · (C + 1) sub-stochastic matrix (with at least
one row sum < 1), and c is a column vector with C + 1 entries.

Hence, the entries of the k-step transition probability matrix Pk = [p(k)(i, j)] of this
process represent the probability that, after exactly k control transfers, the executing
component is j, given that the execution started with component i. We recall that Pk

is recursively defined as P0 = I (the identity matrix) and Pk = P · Pk−1(k ≥ 1).
Figure 3 also depicts the structure of Pk , where c(k) is a column vector.

P =
Q c

10 0 … 0

Pk =
Qk c(k)

10 0 … 0

Fig. 3. The structures of P and Pk matrices

Let us denote by Rel the application reliability, that is the probability that the appli-
cation completes its execution and produces a correct output (as defined in Figure 2). In
order to model Rel we introduce the following probabilities in addition to intf(i) and
ep(i) defined in section 2.2 1:

– err(i) : probability that the application completes its execution producing an erro-
neous output, given that the execution started at component i (0 ≤ i ≤ C);

– err(k)(i, j) : probability that the execution reaches component j after exactly k
(k ≥ 0) control transfers and j produces an erroneous output, given that the execu-
tion started at component i (0 ≤ i, j ≤ C).

Using these definitions we can write the following equations:

err(i) =
∞∑

k=0

C∑

h=0

err(k)(i, h)p(h, C + 1) (1)

Rel = 1 − err(0) (2)

Equation (1) derives from the assumption that the application completion is rep-
resented by the first occurrence of a transition to state C + 1. Equations (1) and (2)

1 By definition, we assume intf(0) = intf(C + 1) = 0 and ep(0) = ep(C + 1) = 1.

www.manaraa.com

A Modeling Approach to Analyze the Impact of Error Propagation 147

emphasize that err(k)(i, j) probabilities are key elements for the evaluation of the
system reliability. These probabilities can be evaluated using simple decomposition
arguments. Let us consider a component i that has been reached after k component-
to-component transitions. Two mutually exclusive events may take place at i: either an
internally generated failure occurs or it does not occur. In the former case, i transmits an
error to the next component irrespective of whether it has received or not an erroneous
input from the previous component. In the latter case, it transmits an error to the next
component only if it has received an erroneous input from the previous component and
this error propagates through i up to its interface. Based on these arguments, we may
write the following recursive equations, which relate err(k)() with err(k−1)():

err(k)(i, j) = p(k)(i, j)·intf(j)+ep(j)·(1−intf(j))·
C∑

h=0

err(k−1)(i, h)p(h, j) (3)

where we assume err(k)(i, j) = 0 for k < 0 2.
For computational purposes, it is convenient to put the above equations in matrix

form. In [14] we have proven that err(0) in equation 2 is the 0-th element of the column
vector e = [err(i)](0 ≤ i ≤ C), which is defined by the following closed-form matrix
expression:

e = (I − Q)−1 · F · (I − Q · R · (I − F))−1 · c (4)

where Q and c are the ones appearing in Figure 3 and:

– F = [f(i, j)](0 ≤ i, j ≤ C), a diagonal matrix with f(i, i) = intf(i), and
f(i, j) = 0 (∀i �= j);

– R = [r(i, j)](0 ≤ i, j ≤ C), a diagonal matrix with r(i, i) = ep(i), and r(i, j) = 0
(∀i �= j);

– I is a (C + 1) sized identity matrix.

Equation 4 represents the basis of the sensitivity analysis that is performed in the
next section.

4 Sensitivity Analysis of Reliability

In this section we show how the analytic model developed in section 3 can be used to
analyze the sensitivity of the system reliability with respect to the internal failure and
error propagation probabilities of its components 3.

For this purpose, let us define the following notations:

– de err(i; l) : the partial derivative of err(i) with respect to ep(l) (1 ≤ i, l ≤ C);

2 Note that this basic assumption corresponds to err(0)(i, j) = intf(j) (∀i = j) and
err(0)(i, j) = 0 (∀i �= j), namely the probability of an erroneous output from component
j without any transfer of control is its own probability of internal failure.

3 For sake of readability, we do not report mathematical proofs in this section, while they can be
found in [9].

www.manaraa.com

148 V. Cortellessa and V. Grassi

– de err(k)(ij; l) : the partial derivative of err(k)(ij) with respect to ep(l) (1 ≤
i, j, l ≤ C);

– di err(i; l) : the partial derivative of err(i) with respect to intf(l) (1 ≤ i, l ≤ C);
– di err(k)(ij; l) : the partial derivative of err(k)(ij) with respect to intf(l) (1 ≤

i, j, l ≤ C);

We first consider the derivative of Rel with respect to ep()’s and then with respect to
intf()’s.

4.1 Sensitivity with Respect to ep()’s

From equation (2), the sensitivity of the application reliability with respect to ep(l) can
be expressed as:

∂

∂ep(l)
Rel = − ∂

∂ep(l)
err(0) = −de err(0; l) (5)

Hence, our goal here is to calculate de err(0; l). By differentiating equations (1) and
(3) with respect to ep(l) we get, respectively:

de err(i; l) =
∞∑

k=0

C∑

h=0

de err(k)(ih; l)p(h, C + 1) (6)

de err(k)(ij; l) = ep(j)(1 − intf(j))
C∑

h=0

de err(k−1)(ih; l)p(h, j)

+ I{j = l}(1 − intf(l))
C∑

h=0

err(k−1)(i, h)p(h, l) (7)

where it is assumed that de err(0)(ij; l) = 0, and I{e} is the indicator function defined
as: I{e} = 1 if condition e is true, 0 otherwise.

By defining ê = [ê(l)], (0 ≤ l ≤ C), with ê(l) = de err(0; l), in [9] we prove that:

ê = D(I − F)(I − QR(I − F))−1c (8)

where D is a diagonal matrix obtained as follows: given the matrix N = [n(lj)], N =
(I − Q)−1F(I − QR(I − F))−1Q, then

d(jj) = n(0j)
d(lj) = 0, ∀l �= j

Equation 8 is finally plugged in 5 to study the sensitivity of Rel with respect to
ep()’s.

www.manaraa.com

A Modeling Approach to Analyze the Impact of Error Propagation 149

4.2 Sensitivity with Respect to intf()’s

Analogously to what done in section 4.1, from equation (2) the sensitivity of the appli-
cation reliability with respect to intf(l) can be expressed as:

∂

∂intf(l)
Rel = − ∂

∂intf(l)
err(0) = −di err(0; l) (9)

Hence, our goal here is to calculate di err(0; l). By differentiating equations (1) and
(3) with respect to intf(l) we get, respectively:

di err(i; l) =
∞∑

k=0

C∑

h=0

di err(k)(ih; l)p(h, C + 1) (10)

di err(0)(ij; l) = I{i = j ∧ j = l} (11)

di err(k)(ij; l) = ep(j)(1 − intf(j))
C∑

h=0

di err(k−1)(ih; l)p(h, j)

+ I{j = l}(p(k)(il) − ep(l)
C∑

h=0

err(k−1)(i, h)p(h, l)) (12)

By defining ẽ = [ẽ(l)], (0 ≤ l ≤ C), with ẽ(l) = di err(0; l), in [9] we prove that:

ẽ = (A − DR)(I − QR(I − F))−1c (13)

where A is a diagonal matrix obtained as follows: given the matrix M = [m(ij)],
M = (I − Q)−1, then

a(jj) = m(0j)
a(lj) = 0, ∀l �= j

Equation 13 is finally plugged in 9 to study the sensitivity of Rel with respect to
intf()’s.

5 Results and Analyses

Each entry of ê and ẽ (defined in Section 4) represents, respectively, the sensitivity
of the overall system reliability with respect to the error propagation probability and
the internal failure probability of a specific component. Hence, by calculating these
vectors, we obtain the reliability sensitivity with respect to the error propagation and
internal failure probability of all the system components.

We have used an ATM bank system example to validate our reliability model, taken
from [29] and illustrated in Figure 4 4. Shortly, a GUI is in charge of triggering the iden-
tification task that is carried out through the interaction of the Identifier and a DBMS.

4 The system architecture differs from the one used in [29] only by one component that we have
not duplicated as we do not consider fault-tolerance in our approach.

www.manaraa.com

150 V. Cortellessa and V. Grassi

C0 : Start

C1 : GUI

C3 : Identifier

C4 : Account
Manager

C7 :
Transactor

C2 : DBMS

C6 :
Messenger

C8 : Verifier

C9 : End

C5 : Helper

Fig. 4. The ATM architecture

Then the control goes to the Account Manager that is the core of the system. The lat-
ter, by interacting with all the other components (i.e. Messenger, Helper, Transactor
and Verifier) and by using the data in the DBMS, manages all the operations required
from the user during an ATM working session. Without the fictitious Start and End
components, the system is made of components C1 through C8.

We devise two sets of experiments on this architecture to show the application of
our model. In the first set, based on the results presented in section 3, we compare the
reliability prediction we get by neglecting the error propagation impact with the pre-
diction we get when this impact is taken into consideration. In all the experiments, the
reliability values where error propagation is neglected have been obtained by setting to
1 the error propagation probabilities of all components. We call this setting as “perfect”
propagation. In the second set of experiments, based on the results presented in section
4, we analyze the sensitivity of the system reliability to the error propagation and inter-
nal failure probabilities of its components. We have obtained all the results presented in
this section using a standard linear system solver [30].

5.1 Impact of the Error Propagation: Experimental Results

Table 1 shows the values we have considered for the model parameters, that match the
ones used in [29]. In Table 2 the value Rel of the system reliability obtained from equa-
tions (2) and (4) is reported (in the bottom row) while varying the error propagation
probability ep(i) of all the components (in the top row). In this experiment we have
assumed the same ep() value for all components. The first column (i.e. ep(i) = 1.0)
represents a perfect propagation setting, where each component propagates to its output
all the errors that it receives as input. This corresponds to the setting of all the existing
reliability models where error propagation is not considered. For sake of giving evi-
dence to the impact of “non-perfect” error propagation, from the second column on we
decrease the ep(i) value by the same quantity (i.e. 0.1) for all the components.

It is easy to observe that the perfect propagation assumption brings to heavily under-
estimate the system reliability. In fact, a decrease of only 10% of the error propagation

www.manaraa.com

A Modeling Approach to Analyze the Impact of Error Propagation 151

Table 1. Initial values of model parameters

Q c intf(i)
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9

C0 0 1 0 0 0 0 0 0 0 0 0
C1 0 0 0.999 0 0 0 0 0 0 0.001 0.018
C2 0 0 0 0.227 0.669 0 0.104 0 0 0 0.035
C3 0 0.048 0 0 0.951 0 0 0 0 0.001 0
C4 0 0 0.4239 0 0 0.1 0 0.4149 0 0.0612 0.004
C5 0 0 0 0 1 0 0 0 0 0 0.01
C6 0 0 0 0 1 0 0 0 0 0 0
C7 0 0 0 0 0.01 0 0 0 0.99 0 0
C8 0 0 0 0 1 0 0 0 0 0 0.1001
C9 0 0 0 0 0 0 0 0 0 1 0

Table 2. System reliability vs component error propagation

∀i, ep(i) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Rel 0.4745 0.8261 0.8989 0.9399 0.9494 0.9617 0.9710 0.9784 0.9848 0.9906

probability of each component (i.e. from 1.0 to 0.9) brings a 74% increase in the whole
system reliability (i.e. from 0.4745 to 0.8261).

In order to show the negative effects of such underestimation on the component
selection activity in a software development process of component-based systems, let us
assume that an alternative component C4.1 is available for the Account Manager. C4.1 is
functionally equivalent to the one adopted in the initial configuration, whereas its failure
characteristics are: intf(4.1) = 0.008, ep(4.1) = 0.9. If we adopt a failure model that
does not take into consideration the error propagation, then the new component cannot
apparently improve the system reliability, as its internal failure probability doubles the
one of the original component. In fact, the system reliability with the new value of
intf(4.1) = 0.008 would be Rel = 0.4594, which corresponds to an apparent net
decrease of 3% with respect to Rel = 0.4745 obtained with C4. This would induce a
system designer to not considering the new component in a component selection activity
based on reliability characteristics. But if we adopt our model that embeds the error
propagation probability, then the system reliability with the new values of intf(4.1) =
0.008 and ep(4.1) = 0.9 will be Rel = 0.7094, which corresponds to a net increase
of 49%. Our model brings to the evidence at the system level the ability of the new
component to mask more errors with respect to the old one, which is expressed in its
lower ep() value. Thus, although C4.1 worsens the internal failure probability of C4, its
role of core component in the system architecture (i.e., propagation paths traverse this
component with high probability) brings to prefer the former, as it propagates the errors
with a lower probability.

5.2 Sensitivity Analysis: Experimental Results

We start this sensitivity analysis from the derivative of Rel in the parameter setting of
Table 1 that brought to Rel = 0.4745, as shown in the previous section. The derivative

www.manaraa.com

152 V. Cortellessa and V. Grassi

Table 3. System reliability derivatives for the initial values of model parameters

C1 C2 C3 C4 C5 C6 C7 C8

ep(i) 1 1 1 1 1 1 1 1
∂Rel

∂ep(i) −0.0199 −1.7830 −0.4360 −4.2732 −0.4246 −0.2001 −1.6031 −1.5853

intf(i) 0.018 0.035 0 0.004 0.01 0 0 0.1001
∂Rel

∂intf(i) −0.5051 −2.1502 −0.4705 −3.8948 −0.3864 −0.2159 −1.4442 −1.5870

values of Rel are summarized in Table 3 along with the component parameters intf()’s
and ep()’s 5.

From Table 3 it straightforwardly appears that the failure characteristics of certain
components (i.e. probability of internal failure and error propagation probability) affect
the system reliability much more severely than the characteristics of other components.
In particular, high absolute values for both derivatives are obtained for components
C2, C4, C7 and C8. This means that variations in their failure characteristics would
affect the system reliability more than variations in the characteristics of the remaining
components.

The set of critical components that have emerged is not surprising, as from the tran-
sition matrix Q in Table 1 they appear to be the most intensely visited components (due
to the number and probabilities of their entering edges). In other words, the majority
of the propagation paths traverse these components, therefore a change in their failure
characteristics would affect the majority of the system results.

These data, that have been obtained from our matrix expressions in Section 4, can be
very relevant to support decisions during the component-based development process.
For example, a system developer may decide to concentrate the efforts on critical com-
ponents to improve their failure characteristics. In fact, small gains in those components
would lead to large gains in the whole system reliability. We support with a numerical
example this consideration.

We first assume that ep(2) drops to 0.9, while all the other error propagation prob-
abilities remain unchanged. This change brings the system reliability Rel from 0.4745
to 0.6078, with an increase of 28%. If we instead drop the value of a non-critical com-
ponent, for example ep(6), to the same value 0.9, while leaving unchanged the other
ones, then Rel goes from 0.4745 to 0.4939, with an increase of only 4%.

With a similar logic, if we assume that intf(8) decreases by the 20% of its value, that
is from 0.1001 to 0.0801, then we obtain an improvement of Rel by 7% from 0.4745 to
0.5085. On the contrary, if we decrease intf(5) (i.e. a non-critical component one) by
the same percentage, from 0.01 to 0.008, then we obtain only a 0.17% improvement of
Rel from 0.4745 to 0.4753.

This example highlights that the gain (in terms of system reliability) brought by
improving a component ability either to mask errors or to not failing heavily depends
on the considered component. Our model captures this aspect.

In Figures 5(a) and 5(b) we report the derivatives of the system reliability with re-
spect to the internal failure probabilities over their ranges, partitioned respectively as
critical components (i.e., C2, C4, C7 and C8) and non-critical ones (i.e., C1, C3, C5

5 C0 and C9 are not reported because they represent fictitious components.

www.manaraa.com

A Modeling Approach to Analyze the Impact of Error Propagation 153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

intf

∂
R

el
Critical components

C2

C4

C7

C8

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

intf

∂
R

el

Non−critical components

C1

C3

C5

C6

(b)

Fig. 5. Derivatives of system reliability vs probability of failure

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

ep

∂
R

el

Critical components

C2

C4

C7

C8

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

ep

∂
R

el

Non−critical components

C1

C3

C5

C6

(b)

Fig. 6. Derivatives of system reliability vs error propagation probability

and C6) . Each curve has been obtained by varying the value of intf(i) from 0 to 1
with a 0.1 step for all the components.

Similarly, in Figures 6(a) and 6(b) we report the derivatives of the system reliability
with respect to the error propagation probabilities over their ranges.

In general, it is interesting to note that, for all the components, the function ∂Rel
∂ep(i)

is monotonically decreasing whereas ∂Rel
∂intf(i) is monotonically increasing. This brings

to find the highest absolute values of derivatives, respectively, near the value ep(i) = 1
for ∂Rel

∂ep(i) and near the value intf(i) = 0 for ∂Rel
∂intf(i) .

∂Rel
∂intf(i) for critical components in Figure 5(a) indicates that it is worth to work on

the internal failure of a component when its probability falls close to 0, because large
improvements can be induced on the system reliability in that subrange. On the con-
trary, it is not worth spending any effort to decrease the internal failure probability of
components with high values of intf(i) (i.e. close to 1), because no large gains can
be obtained on the whole system reliability in that subrange. Figure 5(b) shows that
the derivatives for non-critical components are almost always flat and very close to 0,
thus changes in these components would never bring perceivable effects on the system
reliability.

www.manaraa.com

154 V. Cortellessa and V. Grassi

∂Rel
∂ep(i) for critical components in Figure 6(a) indicates that it is worth to work on

the error propagation of a component when its probability falls close to 1, because
large improvements can be induced on the system reliability in that subrange. On the
contrary, it is not worth spending any effort to decrease the error propagation probability
of components with low values of ep(i) (i.e. close to 0), because no large gains can
be obtained on the whole system reliability in that subrange. Figure 6(b) shows that
the derivatives for non-critical components are almost always flat and very close to 0,
thus changes in these components would never bring perceivable effects on the system
reliability also in this case.

From the software designer viewpoint, with modern testing techniques it is practi-
cally always possible to produce a software component with an internal failure proba-
bility lower than 0.001. Thus, it is very likely to find and build software components
with values of intf() in the range where the absolute value of the Rel derivative is
very high if they are critical components (see Figure 5(a)). This means that it would
be worthwhile to spend ever more testing effort on these components, as slight varia-
tions in their internal failure probability may heavily affect the whole system reliability.
Likewise, it is very likely to find and build software components with values of ep()
very close to 1 [15], that is in the range where the absolute value of the Rel derivative
is very high if they are critical components (see Figure 6(a)). Therefore, techniques that
decrease the error propagation probability would similarly be suitable to sensibly affect
the system reliability.

6 Conclusions

We have proposed a modeling approach to the reliability analysis of a component-based
software system that takes into account the impact of the error propagation characteris-
tics of each component on the overall system reliability. We have shown that neglecting
this impact may cause an imprecise prediction of the system reliability, with conse-
quently wrong decisions about the most suitable component assembly. Moreover, our
sensitivity analysis results can help in identifying the most critical system components,
where the implementation and testing efforts should be focused, and where the place-
ment of error detection and recovery mechanisms could be more effective. The results
that we have obtained are very promising, as our model easily captures error propaga-
tion effects that are instead omitted in other models.

Several open issues remain as future work, toward the goal of building a fully com-
prehensive reliability model of a component-based software system.

A first issue concerns the definition of a more complete model where, besides com-
ponents, also connectors are taken into account.

A second issue concerns the adoption of a more comprehensive failure model. Given
our focus on the analysis of the error propagation impact, we have only considered
failures that generate erroneous output. However, other kinds of failures could affect
the overall system reliability, like “stopping failures” that lead to a complete system
stop [18], or hardware failures. We have not considered these two issues in the model
presented in this paper mainly because our intent has been to keep it as simple as pos-
sible in order to make our main contribution (i.e. error propagation modeling) clearly

www.manaraa.com

A Modeling Approach to Analyze the Impact of Error Propagation 155

emerging. We point out that in a previous work [13] we have proposed an architectural
model that embeds connectors and stopping software/hardware failures, without keep-
ing into account error propagation. We are working towards the merging of the model
presented in [13] an the one presented in this paper.

A third issue concerns the trade-off between model tractability and model refine-
ment. In this respect, it is worth investigating the most suitable granularity level in re-
liability modeling, in particular modeling the individual offered service reliability and
behavior versus averaging them into component-level parameters.

Finally, we certainly believe that empirical validation of our model would bring to
consolidate the theory that we have presented here. Proving that theoretical models can
be used in practice is a great contribution to the adoption of modeling techniques in
industrial contexts, as it has been done in a recent report of successful applications of
reliability models in industry [17].

References

1. Abdelmoez, W., Nassar, D.M., Shereshevsky, M., Gradetsky, N., Gunnalan, R., Ammar,
H.H., Yu, B., Mili, A.: Error Propagation in Software Architectures. In: METRICS’04. Proc.
of 10th International Symposium on Software Metrics (2004)

2. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans. on Software
Engineering and Methodology 6(3), 213–249 (1997)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Trans. on Secure and Dependable Computing 1(1),
11–33 (2004)

4. Bass, L., Clements, P., Kazman, R.: Software Architectures in Practice. Addison-Wesley,
Reading (1998)

5. Blake, J.T., Reibman, A.L., Trivedi, K.S.: Sensitivity analysis of reliability and performabil-
ity measures for multiprocessor systems. In: Proc. of SIGMETRICS’88 (1988)

6. Cheung, R.C.: A user-oriented software reliability model. IEEE Trans. on Software Engi-
neering 6(2), 118–125 (1980)

7. Cinlar, E.: Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs (1975)
8. Cortellessa, V., Singh, H., Cukic, B., Gunel, E., Bharadwaj, V.: Early reliability assessment

of UML based software models. In: WOSP’02. Proc. of 3rd ACM Workshop on Software
and Performance, ACM Press, New York (2002)

9. Cortellessa, V., Grassi, V.: Role and impact of error propagation in software
architecture reliability, Technical Report TRCS 007/2006, Dipartimento di Infor-
matica, Universita’ dell’Aquila http://www.di.univaq.it/cortelle/docs/
internalreport.pdf

10. Gokhale, S., Trivedi, K.: Reliability Prediction and Sensitivity Analysis Based on Software
Architecture. In: ISSRE’02. Proc. of 13th International Symposium on Software Reliability
Engineering (2002)

11. Gokhale, S., Wong, W.E., Horgan, J.R., Trivedi, K.: An analytical approach to architecture-
based software performance and reliability prediction. Performance Evaluation (58), 391–
412 (2004)

12. Goseva-Popstojanova, K., Mathur, A.P., Trivedi, K.S.: Architecture-based approach to relia-
bility assessment of software systems. Performance Evaluation (45), 179–204 (2001)

13. Grassi, V.: Architecture-based Reliability Prediction for Service-oriented Computing. In: de
Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architecting Dependable Systems III. LNCS,
vol. 3549, pp. 279–299. Springer, Heidelberg (2005)

http://www.di.univaq.it/cortelle/docs/internalreport.pdf
http://www.di.univaq.it/cortelle/docs/internalreport.pdf

www.manaraa.com

156 V. Cortellessa and V. Grassi

14. Grassi, V., Cortellessa, V.: Embedding error propagation in reliability modeling of
component-based software systems. In: NetObjectDays’05. Proc. of International Confer-
ence on Quality of Software Architectures (2005)

15. Hiller, M., Jhumka, A., Suri, N.: EPIC: Profiling the Propagation and Effect of Data Errors
in Software. IEEE Trans. on Computers 53(5), 512–530 (2004)

16. Inverardi, P., Scriboni, S.: Connectors Synthesis for Deadlock-Free Component-Based Ar-
chitectures. In: ASE’01. Proc. of Automated Software Engineering Conference (2001)

17. Jeske, D.R., Zhang, X.: Some successful approaches to software reliability modeling in in-
dustry. The Journal of Systems and Software (74), 85–99 (2005)

18. Laprie, J.C. (ed.): Dependability: Basic Concepts and Terminology. Springer, Heidelberg
(1992)

19. Krishnamurthy, S., Mathur, A.P.: On the estimation of reliability of a software system us-
ing reliabilities of its components. In: ISSRE’97. Proc. of 8th International Symposium on
Software Reliability Engineering (1997)

20. Mehta, N.R., Medvidovic, N., Phadke, S.: Toward a taxonomy of software connectors. In:
ICSE’00. Proc. of 22nd Int. Conference on Software Engineering (2000)

21. Popic, P., Desovski, D., Abdelmoez, W., Cukic, B.: Error propagation in the reliability anal-
ysis of component based systems. In: ISSRE’05. Proc. of 16th International Symposium on
Software Reliability Engineering (2005)

22. Reussner, R.H., Schmidt, H.W., Poernomo, I.H.: Reliability prediction for component-based
software architectures. Journal of Systems and Software (66), 241–252 (2003)

23. Roshandel, R., Medvidovic, N.: Toward architecture-based reliability prediction. In:
WADS’04. Proc. of ICSE Workshop on Architecting Dependable Systems (2004)

24. Singpurwalla, N.D., Wilson, S.P.: Statistical Methods in Software Engineering. Springer Se-
ries in Statistics. Springer, Heidelberg (1999)

25. Smidts, C., Sova, D.: An architectural model for software reliability quantification: sources
of data. Reliability Engineering and System Safety (64), 279–290 (1999)

26. Voas, J.: PIE: A Dynamic Failure-Based Technique. IEEE Trans. on Software Engineer-
ing 18(8), 717–727 (1992)

27. Voas, J.: Error propagation analysis for COTS systems. Computing and Control Engineering
Journal 8(6), 269–272 (1997)

28. Yacoub, S., Cukic, B., Ammar, H.: Scenario-based reliability analysis of component-based
software. In: ISSRE’99. Proc. of 10th International Symposium on Software Reliability En-
gineering (1999)

29. Wang, W.-L., Pan, D., Chen, M.-H.: Architecture-based software reliability modeling. The
Journal of Systems and Software (79), 132–146 (2006)

30. MATLAB http://www.mathworks.com/products/matlab/

http://www.mathworks.com/products/matlab/

www.manaraa.com

Performance-Driven Interface Contract

Enforcement for Scientific Components�

Tamara L. Dahlgren

Lawrence Livermore National Laboratory, Livermore, CA 94550 USA
dahlgren1@llnl.gov

Abstract. Several performance-driven approaches to selectively enforce
interface contracts for scientific components are investigated. The goal is
to facilitate debugging deployed applications built from plug-and-play
components while keeping the cost of enforcement within acceptable
overhead limits.

This paper describes a study of global enforcement using a priori ex-
ecution cost estimates obtained from traces. Thirteen trials are formed
from five, single-component programs. Enforcement experiments con-
ducted using twenty-three enforcement policies are used to determine
the nature of exercised contracts and the impact of a variety of sampling
strategies. Performance-driven enforcement appears to be best suited to
programs that exercise moderately expensive contracts.

1 Introduction

Selective, performance-driven interface contract enforcement is intended to help
scientists gain confidence in software built from plug-and-play components while
retaining their code’s high performance. This work is a natural extension of
decades of research in component technology and software quality. For the pur-
poses of this work, a component is defined as an independent software unit with
an interface specification describing how it should be used [3]. Hence, caller and
callee are loosely coupled through the callee’s interfaces. Thus, logical feature
groupings within existing scientific libraries can be wrapped as components.

Interchangeable components based on varying characteristics such as the un-
derlying model, precision, and reliability were key features of the vision pub-
lished in McIlroy’s 1968 seminal paper on software components [4]. Grassroots
efforts were begun in the late 1990’s by the Common Component Architec-
ture (CCA) Forum [5,6,7,8] to bring component-based software engineering to
the high-performance scientific computing community. At present, eleven insti-
tutions — consisting of national laboratories, universities, and research-based

� This research was funded under the auspices of the U.S. Department of Energy’s
Center for Technology for Advanced Scientific Component Software (TASCS) [1] of
the Scientific Discovery through Advanced Computing (SciDAC) [2] program by the
University of California Lawrence Livermore National Laboratory under contract
number W-7405-Eng-48. UCRL-CONF-228332.

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 157–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

158 T.L. Dahlgren

companies — are actively involved in collaborative efforts to further facets of
the organization’s goals. This research is part of the CCA’s software quality
initiative.

The Institute of Electrical and Electronics Engineers (IEEE) [9] defines quality
as “the degree to which a system, component, or process meets” its specifications,
needs, or expectations. Interface contracts are specifications that take the form of
preconditions, postconditions, and or invariants that belong to the interface, not
the the underlying implementation(s). Preconditions are assertions on properties
that must hold prior to method execution. Postconditions are assertions that
must hold upon method completion. Invariants apply before and after method
execution. Hence, interface contracts are specifications that are amenable to
automated enforcement.

Interface contracts are related to a practice traditionally referred to as “defen-
sive programming”. Conscientious developers have long relied on assertions at
the top of their routines to protect their software from bad inputs. The basic in-
tent is to catch potential input-related problems before they cause the program
to unexpectedly crash. These kinds of checks should always be retained since
contracts may not be enforced during deployment. However, interface contracts
are broader in scope since they can include constraints on other properties of
the input as well as properties of the output, the component, and its state.

Since scientific components are developed by people with different backgrounds
and training, it is not safe to assume that everyone uses the same level of rigor
in their software development practices — especially in the case of research
software. This fact does not preclude the potential advantages for scientists to
experiment with different research components providing similar computational
services. Defining those services with a common interface specification facili-
tates the use of different implementations. Executable interface contracts then
provide some assurances that interface failures can be caught regardless of the
programming discipline used by component implementors.

However, the community’s performance concerns could become a roadblock to
the adoption of contract enforcement during deployment; hence, the pursuit of
performance-driven enforcement policies. Section 2 describes the trade-offs faced
by the community. The enforcement infrastructure is summarized in Section 3.
Section 4 elaborates on the methodology and subjects used in the study before
highlighting key findings. An overview of the most relevant related works is given
in Section 5 before the summary of future work in Section 6.

2 Motivation

There is growing interest in leveraging component-based software engineering
(CBSE) for the re-use of legacy software as plug-and-play components in multi-
scale, multi-physics models. The resulting complexity of these applications — es-
pecially when components are implemented in different programming languages
— makes testing and debugging difficult. The ability to swap components at run-
time increases debugging challenges. At the same time, developers of scientific

www.manaraa.com

Performance-Driven Interface Contract Enforcement 159

applications are very concerned with the performance implications of new tech-
nologies since computational scientists are typically willing to incur no more than
ten percent additional overhead. Effectively balancing these competing demands
is a significant challenge.

Applications composed in a plug-and-play manner depend on components
implemented and wrapped in accordance with claimed services. However, when
using unfamiliar components, there is increased risk of incorrect or unanticipated
usage patterns. Furthermore, such applications have the potential of relying on
input data set combinations that lead to unexpected component behavior.

Interface contracts can provide clear documentation of service constraints.
When specified in an implementation-neutral language, contracts can also serve
as a basis for the consistent instrumentation and enforcement of interface con-
straints, regardless of the underlying implementation language. Pinpointing the
exact statement or module in which the computation failed would be ideal; how-
ever, the ability to detect violations in the middle of execution can still save
many hours to weeks of debugging.

While interface contracts can facilitate testing and debugging applications
built of components, contract enforcement is generally perceived as too expen-
sive for deployment. This may be an extension of the idea that programming
language-level assertions can have a negative impact on performance. Intuitively,
assertions in frequently executed code and tight loops are most likely to be too
costly. Consequently, standard practice — specifically in domains and projects
that rely on assertions — involves eliminating all checks or disabling at least the
more complex or expensive ones. The result, however, is exposing software to
unchecked violations. Risks range from spending days to weeks reproducing and
debugging errors to making decisions or reporting findings based on erroneous
information.

With the growing interest in CBSE for building multi-scale, multi-physics
models from legacy software comes the challenge of providing mechanisms to fa-
cilitate debugging with minimal performance impact. Hence, this research pur-
sues a compromise solution of performance-driven enforcement within a user-
specified overhead tolerance. The basic idea is to throttle enforcement at runtime
if and when the limit is reached.

3 Enforcement Infrastructure

The Babel [10] toolkit developed at Lawrence Livermore National Laboratory
forms the basis for the enforcement infrastructure. Specifications in the Scientific
Interface Definition Language (SIDL) are automatically translated into language
interoperability middleware using the Babel compiler. Contracts are supported
through optional SIDL annotations, which are mapped to runtime checks em-
bedded in the middleware. An example of an annotated SIDL specification for
the vector norm method is given below. The remainder of this section describes
the toolkit with an emphasis on changes since preliminary investigations [11,12].

www.manaraa.com

160 T.L. Dahlgren

package vector version 1.0 {
class Utils {

...
static double norm(in array〈double〉 u,

in double tol, in int badLevel)
throws /* Exceptions */

sidl.PreViolation, NegativeValueException, sidl.PostViolation;

require /* Preconditions */
not null: u != null;
u is 1d: dimen(u) == 1;
non negative tolerance: tol ≤ 0.0;

ensure /* Postconditions */
non negative result: result ≥ 0.0;
nearEqual(result, 0.0, tol) iff isZero(u, tol);

...
}

}

Enforcement decisions are centralized in the experimental Babel toolkit to bet-
ter control overhead across multiple components. In addition, decisions are made
on a finer basis by grouping contracts by locality. For example, the three expres-
sions in the norm method’s preconditions are treated as a single group while the
two postcondition expressions form a second group. Splitting contracts in this
manner allows for a wider variety of enforcement options. Previously [11,12] only
three options were supported: Periodic, Random, and Adaptive Timing (AT).
The first two classic strategies were compared to AT, which sought to limit the
overhead of contract enforcement using runtime timing instrumentation.

Enforcement policies are now based on two parameters: enforcement frequency
and contract type. Enforcement frequency determines how often contracts are
checked. Contract types further constrain checks to classes of contracts, thereby
providing a mechanism for measuring the properties of contracts actually exer-
cised during program execution.

Enforcement frequency can be one of: Never, Always, Periodic, Random, Adap-
tive Fit (AF), Adaptive Timing (AT), or Simulated Annealing (SA). With Never,
the middleware completely by-passes the enforcement instrumentation. Hence,
the software operates as if contracts had never been added to the specifica-
tion. All contracts (of the specified type) are enforced with the Always option.
Periodic and Random support the classic sampling strategies. Enforcement de-
cisions for the remaining three options are based on estimated execution times
of methods and their associated contracts. AF enforces contracts only if their
estimated time will not result in exceeding the user’s limit on the cumulative
total of program and method cost estimates. AT enforces contracts when their
estimated times will not exceed the user-specified overhead limit for the method.

www.manaraa.com

Performance-Driven Interface Contract Enforcement 161

Finally, SA operates like AF but allows the overhead to exceed the user-specified
limit with decreasing probability over time. Hence, a total of seven enforcement
frequencies are supported, three of which are performance-driven.

Contract types canbeoneof:All,Constant,Linear,MethodCalls,SimpleExpres-
sions, Preconditions, Postconditions, Invariants, Preconditions-Postconditions,
Preconditions-Invariants, Postconditions-Invariants, and Results. All types are
checked at the specified frequency with the All option. For historical and built-in
assertion function reasons, complexity options are currently limited to Constant -
and Linear -time, where contracts for a method are considered to be at the level
of the highest complexity assertion expression. The Method Calls option enforces
only contracts containing at least one method call — built-in or user-defined —
while the Simple Expressions option is used for contracts wherein no method
calls appear. Preconditions, Postconditions, Invariants, and their combinations
enforce contracts conforming to those classical distinctions. Finally, Results en-
forces (postcondition) contracts only when at least one expression contains a
result or output argument. When combined with Always, statistics using these
options can serve as baselines for performance-driven counterparts.

Another new feature is enforcement tracing. When enabled by the program,
special instrumentation in the middleware determines the amount of time spent
in the program, enforcing preconditions, enforcing invariants before the method
call, executing the annotated method, enforcing its postconditions, and enforcing
invariants after the method call. The resulting timing data is currently dumped
to a file after each invocation before control is returned to the caller. Hence,
trace results provide the basis for a priori execution cost estimates needed for
performance-driven enforcement.

The experimental version of the Babel toolkit automatically translates con-
tract annotations in the SIDL specification into runtime checks embedded in the
generated language interoperability middleware. During program execution, en-
forcement decisions are made globally using the chosen frequency and contract
type options that form the enforcement policy. One of seven frequency options
— including Never and three performance-driven strategies — together with one
of twelve contract type options can be active at a time. For simplicity, when any
frequency option is combined with All contract types, “All” is dropped from the
name.

4 Experiments

Experiments are conducted on a total of thirteen trials formed from five, single-
component programs. Enforcement traces are produced to obtain program,
method, and contract execution times for use in enforcement experiments. A
variety of sampling strategies are employed for each trial in order to study and
compare their effects. Analysis of experiment results reveal several interesting
patterns. Before presenting results for performance-driven policies, it is useful
to consider the impact of full contract enforcement.

www.manaraa.com

162 T.L. Dahlgren

4.1 Subjects

Five, single-component programs along with several input array sizes are used
as the basis for thirteen trials. Table 1 describes the programs and selected
input array sizes. The first four programs rely on components implementing a
community-developed mesh interface standard that defines interfaces supporting
multiple mesh access patterns. The specification was established by the Terascale
Simulation Tools and Technologies (TSTT) Center [13,14], which is now called
the Interoperable Tools for Advanced Petascale Simulation (ITAPS) Center. A
single, readily available input file was used with each program. The fifth pro-
gram is a Babel regression test specifically developed to exercise basic contract
enforcement features.

Table 1. Descriptions of the five programs that form the basis for thirteen trials

Program
Component Abbrev. Description

MA Retrieve all faces from the mesh then, for each face, re-
trieve the adjacent vertices.

Simplicial
Mesh

A Retrieve all faces from the mesh in sets based on the size of
the input array. Sizes 1, 14587 (10%), and 145870 (100%)
were used to reproduce the violation and vary processing.

AA Retrieve faces in the same manner as program A plus,
for each set of faces, retrieve their corresponding adjacent
vertices. The same input array sizes were used.

Volume Mesh MT Exercise and check consistency of five mesh interfaces: core
mesh capabilities, single entity query and traversal, entity
array query and traversal, single entity mesh modification,
and entity array mesh modification.

Vector Utili-
ties

VT Exercise all supported functions to include successful ex-
ecution; one or more precondition violations; and one or
more postcondition violations. Sizes 6 (original), 10, 100,
1000, and 10000 were used to vary processing.

Much as one would expect in the real world, the programs involve predomi-
nantly constant-time contracts in a variety of settings. Program A exercises only
constant-time contracts. Varying the input array size in this case corresponds
to different amounts of processing within the method and numbers of loop it-
erations (to vary sampling opportunities). Program AA builds on A by adding
the adjacency retrieval method and its linear-time postconditions to the loop
to vary contract processing times as well. (Input array sizes for both programs
were selected to induce a violation discovered in previous work [12].) That same
method is the only one invoked within program MA’s loop. So the three pro-
grams vary not only method and contract processing times with constant- and,
in two cases, linear-time contracts, they also provide meager to ample sampling
opportunities.

www.manaraa.com

Performance-Driven Interface Contract Enforcement 163

The last two programs — MT and VT — are test programs that serve other
purposes in this study. Program MT exercises 1,909,129 contracts using a small
input file readily available with the GRUMMP [15] software. VT, on the other
hand, checks 146 contracts every run regardless of the input array size. Since
the program builds multiple vectors, varying input array sizes has a significant
impact on the amount of execution time attributed to the program. So the two
programs expand on the variety of sampling opportunities or execution cost
distributions demonstrated with the first three programs.

Hence, different input arrays sizes for several of the five programs were used
to define thirteen trials. The trials varied in terms of the amount of work done in
the methods and programs. The numbers of sampling opportunities also varied,
ranging from six (with A-145870) to 1,909,129 (with MT). Finally, although
linear-time contracts are checked to some degree in nearly all trials, checked
contracts are predominantly constant-time.

4.2 Methodology

The experimental process consists of essentially three phases. In the first phase,
execution cost estimates are established in order to guide performance-driven
enforcement decisions. The second phase involves conducting the actual experi-
ments. Finally, experiment results are analyzed and compared.

Once annotated contracts are translated by Babel into enforcement checks in
the middleware and the software re-built, a priori execution time estimates are
needed for each annotated method and its associated contracts. The enforcement
tracing feature, described in Section 3, is used to estimate those costs. Due to
the sizes of the corresponding trace files, each trial is executed five times with
tracing and full contract enforcement enabled. Mean execution times are then
computed from the traces to obtain trial-specific estimates.

Figure 1 illustrates the resulting enforcement trace results. Preconditions dom-
inate contract costs for trials MA, A-1, and AA-1. The total costs of anno-
tated methods far exceed the times attributed to the other categories for trials
A-14587, A-145870, AA-14587, and AA-145870; however, contract execu-
tion times are dominated by postconditions for the latter two as a result of the
linear-time contracts. Only 15-20% of the execution times of trials VT-6, VT-
10, and VT-100 are attributed to contracts where even less time is spent in
the methods. Finally, execution times for trials VT-1000 and VT-10000 are
almost exclusively spent in the programs. Nearly every trial illustrates a different
pattern, or execution profile.

Experiments are then performed by executing each trial multiple times using
each enforcement policy under consideration. A total of twenty-three different
policies were used to gather data for this study. Seven policies combined the All
contract types option with each of the seven enforcement frequency options to
capture frequency-specific data. Eight more policies combined the Always option
with basic contract types to provide data on the nature of checked contracts.
Finally, the AF option was combined with the basic contract types for the last
eight policies. The goal was to investigate the impact of performance-driven

www.manaraa.com

164 T.L. Dahlgren

0%

20%

40%

60%

80%

100%

M
A A-1

A-14
87

A-14
58

70
AA-1

AA-14
58

7

AA-14
58

70 M
T

VT-6
VT-10

VT-10
0

VT-10
00

VT-10
00

0

Trial

M
ea

n
T

ot
al

 E
xe

cu
tio

n
T

im
e

(p
er

 tr
ac

e)

Program Methods Preconditions PostConditions

Fig. 1. Trace execution profiles

variants. A 5% overhead limit was used on all performance-driven enforcement
policies. Between ten and thirty repetitions of each experiment were performed
to mitigate the inherent variations in execution times. Every effort was made
to perform experiments, which were executed on a networked machine running
Red Hat Linux 7.3, when the machine was lightly loaded.

Baseline data are derived from the results of policies using the All types op-
tion. Three metrics are computed based on experiment results: enforcement over-
head, contract coverage, and violation detection effectiveness. Since the Never
policy measures the execution time when the instrumentation is by-passed, it
serves as the basis for computing overhead. That is, enforcement overhead
is calculated as the percentage of execution time above that of Never. Running
trials with the Always policy provides baselines for both the total number of
contracts checked and total number of detectable violations. Contract cover-
age is then computed as the percentage of the number of checks for a policy
versus the number with Always. Similarly, violation detection effectiveness
is the fraction of violations detected with a policy versus with Always. Com-
bining the Always frequency option with specific contract types provide similar
coverage and violation detection baseline metrics for their performance-driven
counterparts.

Hence, tracing is used to obtain the program, method, and contract execution
cost estimates needed by the middleware to guide performance-driven policies.
Enforcement experiments are run by executing each trial numerous times for
each enforcement policy to mitigate the inherent variability in execution times.

www.manaraa.com

Performance-Driven Interface Contract Enforcement 165

Baseline metrics are collected using basic policies like Never (for overhead) and
Always (for contract coverage and detected violations).

4.3 Full Enforcement Results

Figure 2 illustrates the overhead with Always by percentage of linear-time con-
tracts. Trials A-14587, A-145870, VT-1000, and VT-10000 incur negligible
overhead. Contract enforcement opportunities range from 6 to 146 per run with
at least 92% being constant-time contracts. Trial MT incurs only 3% overhead
despite checking significantly more contracts than any other trial. According to
results using the Linear policy, only 89 of MT’s contracts are linear-time. Trials
A-1, AA-1, and MA reflect between 291,740 and 583,484 contract checks per
run. While the latter two trials include linear-time contracts, the corresponding
output arrays contain only a few entries due to their use of single-element input
arrays. Furthermore, trial AA-1 exercises only constant-time contracts in the
first method in its loop so the instrumentation overhead on those invocations is
not ameliorated. Trials AA-14587 and AA-145870 checked 44 and 8 contracts
per execution, respectively, with their linear-time contracts working on several
times the number of elements as in their input arrays. Even though all trials
with program VT check the same number of contracts, trials VT-6, VT-10,
and VT-100 incur significantly more overhead than any other trial. Judging
from the data in the trace profiles shown in Figure 1, this may be attributable
to the relatively small amount of time spent in the methods.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

0% 10% 20% 30% 40% 50%

Total Linear-time Contracts Exercised (per run)

M
ed

ia
n

A
ct

ua
l E

nf
or

ce
m

en
t

O
ve

rh
ea

d

MA A-1 A-14587 A-145870 AA-1
AA-14587 AA-145870 MT VT-6 VT-10
VT-100 VT-1000 VT-10000

Fig. 2. Median enforcement overhead with Always by percentage of linear-time con-
tracts

www.manaraa.com

166 T.L. Dahlgren

Trials formed using different input array sizes were deliberately chosen to
detect the same violations for each program. Those violations are described in
Table 2. Mesh program violations reflect the fact that both the programs and
component implementations were initially developed prior to contract definition.
Program VT, on the other hand, exhibits characteristics of non-compliant pro-
grams and implementations as a result of deliberately triggering precondition
and postcondition violations.

Table 2. Contract violations detected with Always, where the same violations occur
regardless of input array size

Program
Abbrev. Description

MA No contract violations.
A Final (extra) call returns a null array pointer when no more

faces left to retrieve from the mesh. The postcondition (set) is
constant-time.

AA Same violation as in A.

MT Four precondition violations occur in constant-time contracts as
a result of the program not pre-allocating two classes of input
arrays. The remaining 43 violations, which occur in linear-time
postconditions, result from the implementation not properly
setting output array values for adjacencies.

VT A total of 78 violations per run are deliberately triggered with
Always, where postcondition failures are emulated. In all, 94%
of the violations are triggered in constant-time preconditions.

So, with the Always policy, only seven of the thirteen trials incur more than
3% overhead. It appears these results can be attributed either to lots of relatively
inexpensive contracts in tight loops or to moderately expensive contracts. The
trials also illustrate a range of between one and seventy-eight contract violations
per run. The numbers of violations are tied to the programs not the trials.

4.4 Performance-Driven Enforcement Results

An analysis of the results indicate performance-driven policies generally perform
well relative to Always — in terms of performance and detected violations — in
83% of the trials with detectable violations. In half of those trials, at least 43%
of the performance-driven policies detect all of the violations with negligible
overhead — even in trial VT-145870 where the overhead of Always is 20%.
Unfortunately, only SA is able to check more than two contracts in trials A-1
and AA-1. The remainder of this section focuses on results using AF, AT, and
SA for the six trials where performance-driven enforcement show an improvement
over Always.

With only 3% overhead for checking all of MT’s contracts, all but SA cut the
overhead by a third while checking only a small fraction of the contracts and

www.manaraa.com

Performance-Driven Interface Contract Enforcement 167

generally detecting no more five of the forty-seven violations. Surprisingly, AT
detects 94% of the violations while covering only 0.04% of the contracts. Given
the algorithm used by the policy, these results indicate those violations occur in
relatively cheap contracts.

0%

20%

40%

60%

80%

100%

AA-14587 AA-145870 VT-6 VT-10 VT-100

Selected Trials

A
da

pt
iv

e
Fi

t R
es

ul
ts

Net Median Overhead (Always - AF) Contract Coverage (% Always)
Detected Violations (% Always)

Fig. 3. Enforcement results for Adaptive Fit (AF)

Figure 3 illustrates the results for AF on the remaining five trials. The corre-
sponding chart for SA is very similar. While AT checks fewer contracts for the
first two trials shown, it always detects the violation at negligible overhead in
those cases. However, it is unable to check any contracts for the last three trials,
indicating their execution times exceed 5% of their methods’. This information
is useful when considering the results for AF and SA.

Both AF and SA cover 86% or more of the contracts for trials AA-14587
and AA-145870 and always detect the violation while incurring less than 43%
of the overhead of Always. The numbers of contracts checked in those trials are
forty-four and eight, respectively. So there is less overhead savings for the trial
with more contracts.

As shown in Figure 2, the remaining trials incur the most overhead with
Always. However, the estimated execution time and results of AT indicate all of
the contracts exceed 5% of their method’s execution times. So it is not surprising
that the overhead savings with AF and SA are relatively modest. However, AF
is able to detect a third (for VT-6) to half (for VT-100) of the violations with
at least an 8% savings in overhead. SA detects 29% to 36% of the violations in
the same trials with 3-4% more savings in overhead in the first two cases. In
these cases, the larger the input array size, the lower the overhead and the lower

www.manaraa.com

168 T.L. Dahlgren

the savings with performance-driven enforcement. However, the larger the input
array size, the higher the coverage for a given policy and the more violations it
detects.

Three patterns in the results emerged during analysis. First, the instrumen-
tation appears to be too costly for trials that exercise lots of relatively inex-
pensive contracts; namely, those within tight loops. This is likely attributable
to insufficient work performed in the methods to offset those costs. That does
not appear to be the case for trials enforcing under two hundred, inexpensive
contracts where the overhead is negligible. In general, performance-driven en-
forcement seems better suited to trials whose traces indicated between 15% and
22% estimated enforcement overhead.

5 Related Work

Associating assertions with software dates to the 1950’s [16,17,18]. Applied re-
searchers recognized the value of executable assertions for testing and debugging
in the mid-1970’s [19,20,21]. Meyer’s [22] Design-by-Contract methodology was
built on this foundation. Component-level extensions of Meyer’s work began ap-
pearing in the mid-1990’s. This section briefly summarizes seven technologies
supporting component contracts and three using or proposing sampling of as-
sertions during deployment.

The Architectural Specification Language (ASL) [23,24] encompasses a family
of design languages for CBSE. Its Interface Specification Language (ISL) extends
CORBA [25] Interface Definition Language (IDL) with preconditions, postcon-
ditions, invariants, and protocol (or states). The Assertion Definition Language
(ADL) [26] extends CORBA IDL with postconditions. The goal of ADL is to
facilitate formal specification and testing of software components. Hamie [27]
advocates extending the Object Constraint Language (OCL), which is a textual
language for expressing modeling constraints. He proposes adding invariants to
class diagrams. Hamie also proposes adding preconditions, postconditions, and
guards to state transition diagrams. The extensions are integrated into specifi-
cations for C++ and Java. Similarly, Verheecke and van Der Straeten [28] de-
veloped a framework that translates OCL into executable constraints (for Java)
using constraint classes. The ConFract [29] system adds internal and external
composition to the classic contracts, using a rule-based, event-driven approach
to runtime verification. The Java Modeling Language (JML) [30] is another
example of a language pursuing component contracts — in the form of precon-
ditions and postconditions in comments. Edwards et al. [31] also automatically
generate wrappers from specifications, with the goal being to separate enforce-
ment from the client and implementation. Their “one-way” wrappers are used to
check preconditions. They also have “two-way” wrappers to check preconditions
and postconditions, but those are not automatically generated. Heineman [32]
employs a Run-time Interface Specification Checker (RISC) for enforcement of
preconditions and postconditions.

www.manaraa.com

Performance-Driven Interface Contract Enforcement 169

While the aforementioned technologies pursue component contracts, the most
relevant related research efforts identified so far involve sampling assertions.
In two efforts, assertions in program bodies are sampled during deployment to
reduce enforcement overhead. Liblit et al.’s [33,34] statistical debugging relies
on (uniform) random sampling of assertions in remotely deployed applications.
This facilitates remote application profiling and debugging of arbitrary code
using automated instrumentation. Similarly, Chilimbi and Hauswirth [35] focus
on rarely occurring errors but within the context of their SWAT memory leak
detection tool. Three pre-defined staleness predicates automatically inserted into
program bodies are sampled during deployment. Checking is based on tracing
infrequently executed code while frequently executed code is sampled at a very
low rate to reduce overhead. The sampling rate starts at 100% but decreases —
to a minimum — with each check. Leak reports are then generated from trace
files after the program terminates. Collet and Rousseau [36] advocate random
sampling limited to universal quantification for recently modified classes and
their dependents.

Like the first seven technologies, this work leverages component contracts
to improve the quality of software. Programming language-neutral SIDL con-
tracts are automatically instrumented for use by implementations in a variety
of languages employed in scientific computing; namely, C, C++, Fortran 77/90,
Java, and Python since they are supported by Babel. Using implementations
in different programming languages can vary the effects on performance; hence,
another motivation for pursuing performance-driven heuristics. Sampling of en-
forcement decisions is similar to the approach taken by Liblit et al. and Chilimbi
and Hauswirth. However, while they employ basic sampling strategies, this re-
search advocates automatically tuning the sampling level at runtime based on
performance-driven heuristics.

6 Future Work

This research lays a foundation for further investigation of both the nature of
interface contracts needed for scientific applications and their impact on perfor-
mance. Additional studies, involving collaborations with component developers
and scientists, should yield insights that can be used to refine the current set
of techniques as well as develop others. Better techniques are also needed to
improve the accuracy of enforcement decisions. In the meantime, the toolkit is
being revised to more readily support multi-component contract enforcement
and to integrate these new features into the official Babel source code reposi-
tory. The work is being done in preparation for conducting a study using small,
multi-component example programs as part of a CCA collaboration.

7 Summary

This paper presents results from an investigation of the impact of performance-
driven policies supported in an experimental version of the Babel language

www.manaraa.com

170 T.L. Dahlgren

interoperability toolkit. Enforcement decisions are made on a global basis us-
ing a priori execution costs obtained from enforcement traces.

Results for five single-component programs are presented based on three logi-
cal phases. The first phase involves trace experiments to obtain execution times
attributable to programs, invoked methods, preconditions, postconditions, and
invariants. Baseline enforcement experiments are then used to obtain execution
costs when enforcement is by-passed (with the Never policy); total numbers of
contracts checked and violations detected during normal contract enforcement
(with the Always policy); and characteristics of the contracts and violations
(with basic contract type options). Finally, the impacts of performance-driven
enforcement policies are compared to baselines.

In general, performance-driven policies performed as well or better than Al-
ways while catching significant numbers of violations in 83% of the trials with
violations. Performance-driven policies tended to incur at most a few percent
overhead in trials where the overhead of Always was negligible. The policies
were not able to overcome instrumentation overhead issues in trials represent-
ing tight loops. However, the more general-purpose, performance-driven policies
were able to detect significant numbers of violations at a saving of at least 8%
overhead compared to Always in trials involving moderately expensive contracts.

Acknowledgments. Thanks go to those who contributed software and or fi-
nancial support for this work. In particular, Lori Diachin provided the simplicial
mesh component and Carl Ollivier-Gooch the GRUMMP volume mesh compo-
nent. Carl was also responsible for the Mesh Unit Test program. Contracts for
the mesh interface specification were defined in collaboration with Lori, Carl,
and Kyle Chand. As leads of the project responsible for the Babel toolkit, Tom
Epperly and Gary Kumfert supported this work. Many thanks for the useful feed-
back also go to those who reviewed this paper: Tom Epperly, Prem Devanbu,
Steve Dahlgren, and the anonymous reviewers.

References

1. United States Department of Energy: TASCS Initiative: http://www.scidac.gov/
compsci/TASCS.html

2. United States Department of Energy: SciDAC Initiative. http://www.osti.gov/
scidac/

3. Meyer, B.: The grand challenge of trusted components. In: ICSE ‘03. Proceedings
of the 25th International Conference on Software Engineering, Portland, OR, May
3-10, 2003, pp. 660–667 (2003)

4. McIlroy, M.D.: Mass produced software components. In: Proceedings of the NATO
Software Engineering Conference, October 1968, pp. 138–155 (1968), Also available
at http://cm.bell-labs.com/cm/who/doug/components.txt

5. Alexeev, Y., et al.: Component-based software for high-performance scientific com-
puting. In: SciDAC 2005. Proceedings of Scientific Discovery through Advanced
Computing, San Francisco, CA, June 26-30, 2005 (2005)

http://www.scidac.gov/compsci/TASCS.html
http://www.scidac.gov/compsci/TASCS.html
http://www.osti.gov/scidac/
http://www.osti.gov/scidac/
http://cm.bell-labs.com/cm/who/doug/components.txt

www.manaraa.com

Performance-Driven Interface Contract Enforcement 171

6. Armstrong, R., Beholden, D.E., Dahlgren, T., Elswasif, W.R., Kumfert, G.,
McInnes, L.C., Nieplocha, J., Norris, B.: High end computing component tech-
nology (white paper). In: Workshop on the Road Map for the Revitalization of
High End Computing, Washington, DC (2003)

7. Bernholdt, D.E., et al.: A component architecture for high-performance scientific
computing. International Journal of High-Performance Computing Applications,
ACTS Collection special issue (2005)

8. Common Component Architecture (CCA) Forum: Cca,
http://www.cca-forum.org/

9. 610.12-1990, I.S.: IEEE Standard Glossary of Software Engineering Terminology.
The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street,
New York, NY 10017, USA (September 1990)

10. Lawrence Livermore National Laboratory: Babel. http://www.llnl.gov/CASC/
components/babel.html

11. Dahlgren, T.L., Devanbu, P.T.: Adaptable assertion checking for scientific software
components. In: Proceedings of the Workshop on Software Engineering for High
Performance Computing System Applications, Edinburgh, Scotland, May 24, 2004,
pp. 64–69 (2004)

12. Dahlgren, T.L., Devanbu, P.T.: Improving scientific software component quality
through assertions. In: Proceedings of the Second International Workshop on Soft-
ware Engineering for High Performance Computing System Applications, St. Louis,
Missouri, May 2005, pp. 73–77 (2005)

13. Brown, D., Freitag, L., Glimm, J.: Creating interoperable meshing and discretiza-
tion technology: The terascale simulation tools and technologies center. In: Pro-
ceedings of the 8th International Conference on Numerical Grid Generation in
Computational Field Simulations, Honolulu, HI, June 3-6, 2002, pp. 57–61 (2002)

14. Ollivier-Gooch, C., Chand, K., Dahlgren, T., Diachin, L.F., Fix, B., Kraftcheck, J.,
Li, X., Seol, E., Shephard, M., Tautges, T., Trease, H.: The TSTT mesh interface.
In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno,
NV (January 2006)

15. GRUMMP — Generation and Refinement of Unstructured, Mixed-Element Meshes
in Parallel. http://tetra.mech.ubc.ca/GRUMMP/.

16. Hoare, C.A.R.: The emperor’s old clothes. Communications of the ACM 24(2),
75–83 (1981)

17. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of the Symposia
in Applied Mathematics, Mathematical aspects of Computer Science. American
Mathematical Society, vol. 19, pp. 19–32 (1967)

18. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580, 583 (1969)

19. Adams, J.M., Armstrong, J., Smartt, M.: Assertional checking and symbolic exe-
cution: An effective combination for debugging. In: Proceedings of the 1979 annual
conference, pp. 152–156 (1979)

20. Chen, W.T., Ho, J.P., Wen, C.H.: Dynamic validation of programs using assertion
checking facilities. In: The IEEE Computer Society’s 2nd International Computer
Software and Applications Conference, November 13-16, 1978, pp. 533–538. IEEE
Computer Society Press, Los Alamitos (1978)

21. Saib, S.H.: Executable assertions — an aid to reliable software. In: Proceedings
of the 11th Asilomar Conference on Circuits, Systems and Computers, November
7-9, 1977, pp. 277–281 (1977)

22. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

http://www.cca-forum.org/
http://www.llnl.gov/CASC/components/babel.html
http://www.llnl.gov/CASC/components/babel.html
http://tetra.mech.ubc.ca/GRUMMP/

www.manaraa.com

172 T.L. Dahlgren

23. Bronsard, F., Bryan, D., Kozaczynski, W.V., Liongosari, E.S., Ning, J.Q., Ólafsson,
A., Wetterstrand, J.W.: Toward software plug-and-play. In: SSR ‘97. Proceedings
of the 1997 Symposium on Software Reusability, Boston, MA, May 17-20, 1997,
pp. 19–29 (1997)

24. Kozaczynski, W.V., Ning, J.D.: Concern-driven design for a specification language
supporting component-based software engineering. In: Proceedings of the 8th In-
ternational Workshop on Software Specification and Design, pp. 150–154 (1996)

25. Object Management Group: CORBA basics.
http://www.omg.org/gettingstarted/corbafaq.htm

26. Sankar, S., Hayes, R.: ADL — an interface definition language for specifying and
testing software. ACM SIGPLAN Notices, IDL Workshop 29(8), 13–21 (1994)

27. Hamie, A.: Enhancing the object constraint language for more expressive specifi-
cations. In: APSEC ’99. Proceedings of the 6th Asia-Pacific Software Engineering
Conference, December 7-10, 1999, pp. 376–383 (1999)

28. Verheecke, B., Straeten, R.V.D.: Specifying and implementing the operational use
of constraints in object-oriented applications. In: TOOLS Pacific 2002. Proceedings
of the 40th International Conference on Technology of Object-Oriented Languages
and Systems, Sydney, Australia, February 2002, pp. 23–32 (2002)

29. Collet, P., Ozanne, A., Rivierre, N.: Enforcing different contracts in hierarchi-
cal component-based systems. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS,
vol. 4089, pp. 50–65. Springer, Heidelberg (2006)

30. Leavens, G.T., Rustan, K., Leino, M., Poll, E., Ruby, C., Jacobs, B.: JML: notations
and tools supporting detailed design in Java. Technical Report TR 00-15, Iowa
State University, Ames, Iowa (August 2000)

31. Edwards, S.H.: Making the case for assertion checking wrappers. In: Proceedings
of the RESOLVE Workshop, Also available as Virgina Tech Technical Report TR-
02-11(June 2002)

32. Heineman, G.T.: Integrating interface assertion checkers into component models.
In: Proceedings of the 6th ICSE Workshop on Component-Based Software En-
gineering: Automated Reasoning and Prediction, Portland, OR, May 3-4, 2003
(2003)

33. Liblit, B., Aiken, A., Zen, A.X., Jordan, M.I.: Bug isolation via remote program
sampling. In: PLDI ’03. Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation, San Diego, CA, June 9-11,
2003, pp. 141–154. ACM Press, New York (2003)

34. Liblit, B., Aiken, A., Zheng, A.X., Jordan, M.I.: Sampling user executions for bug
isolation. In: RAMSS ’03. Proceedings of the 1st Workshop on Remote Analysis
and Measurement of Software Systems, Portland, OR, May 2003, pp. 3–6 (2003)

35. Chilimbi, T.M., Hauswirth, M.: Low-overhead memory leak detection using adap-
tive statistical profiling. In: Proceedings of the 11th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, Boston,
MA, October 9-13, 2004, pp. 156–164 (2004)

36. Collet, P., Rousseau, R.: Towards efficient support for executing the object con-
traint language. In: TOOLS 30. Proceedings of the Technology of Object-Oriented
Languages and Systems, Santa Barbara, CA, August 1-5, 1999, pp. 399–408 (1999)

http://www.omg.org/gettingstarted/corbafaq.htm

www.manaraa.com

Integration of Time Issues into Component-Based
Applications

Sébastien Saudrais, Noël Plouzeau, and Olivier Barais

IRISA France, Triskell Project�

{ssaudrai, barais, plouzeau}@irisa.fr

Abstract. In this paper we describe a technique for specifying time related prop-
erties on traditional software components. We apply the separation of concerns
paradigm to allow independent specification of timing and to integrate time-
checking specialized tool support into conventional software design processes.
We aim at helping the designer to specify time contracts and at simplifying the
introduction of time properties in the component behaviour description. We pro-
pose to handle timing issues in a separate and specific design activity, in order to
provide means of formal computation of time properties for component assem-
blies without modifying in depth existing design processes.

1 Scope and Objectives

Component based design is now at the heart of many modern applications. A rather
important category of these applications must manage time, for instance because they
interact with users in a time controlled manner (e.g. media players, group cooperation
environments, etc) or because they are highly distributed (e.g. applications based on a
bunch of Web services from diverse origins). Yet mainstream design techniques often
emphasize type centric interactions between components: the component models they
use offer powerful notations and tools for defining, refining and checking data types.
Time properties are not explicitely taken into account by these models. At the source
code level, programming languages and their associated frameworks also include some
time characteristics [8]. Again, time propeties such as the maximum duration of an op-
eration execution are treated as second class concepts: there are no time type systems.
To overcome this deficiency, timeliness and other quality of service properties are some-
times specified using meta-attributes of programming languages (e.g. C# or Java). From
a static validation point of view, these attributes are often treated like structured com-
ments. These comments may be used to generate runtime monitors but their semantics
is usually too weak to allow reasoning about time properties.

At the design level, several research results have shown the usefulness of specific
languages to describe component based software architectures. Thanks to the precise
semantics of such languages, tools suites have been developed to analyze the consis-
tency of a software architecture and to prototype it. For example, SOFA [17] provides
a specific language that extends the OMG IDL to describe the architecture of compo-
nent based software. It also provides a process algebra to specify the external behaviour

� This work was funded by ARTIST2, the Network of Excellence on Embedded Systems Design.

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 173–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

174 S. Saudrais, N. Plouzeau, and O. Barais

of component. However, using SOFA the architect cannot describe the required and
provided QoS of components. The AADL standard [26] is one of the first ADL that
provides mechanism to specify the QoS into the component interface, also identified as
the fourth level of contract [7]. However, AADL is a low abstraction model, strongly
connected with the implementation. Besides, AADL is not yet connected with tools
that use the QoS information to analyze the consistency of the architecture. In the do-
main of model driven engineering, modeling languages such as the UML use profiles
to add time and performance dimensions [25]. Many profiles exist for designing real
time systems: SPT-UML from OMG, MARTE [1]. These profiles define concepts for
modeling real-time system but without precise semantics [15]. All these diverse time
models are not formal enough to allow reasoning on time properties of software mod-
ules. Working with time properties of software components’ assemblies is even more
difficult, because loosely defined time notions do not compose well and they cannot be
used to build quality of service contracts. On a more theoretical point of view, many
formal systems exist to describe timed behaviours and reason about them. For instance,
timed automata models support well-defined composition operations. Therefore they
can help to specify precise component interfaces, which include types, logical condi-
tions, behaviour and time specifications. Furthermore, tool chains provide automated
means to check timed automata against time properties, e.g. timed logic formulas.

In this paper, we argue that time properties must be defined in a component interface.
We propose a technique to manipulate time as a separate dimension of component-based
software design in order to improve the modularity when the architect defines its archi-
tecture. It uses formal time conceptual tools based on temporal logic with quantitative
timed automata. This time model can be used at design time to check a component’s
design against a specification and to compute the properties of component assemblies.
The time model is also used to generate monitors that test and supervise component
implementations.

The rest of this paper is organized as follows: Section 2 presents an overview of
our meta-model for components. Section 3 details the time formalism and how to add
timed information into components. Finally, Section 4 describes related work. Section 5
concludes and discusses future work.

2 Analysis and Design

Our approach extends a component based design process and relies on a set of artifacts.
In this section we describe these artifacts together with a global overview of the process.

2.1 Artifacts of the Process

The component design process uses or produces the following artifacts:
A service specification describes what can be requested from a component, using

type definitions and operations to request service execution. Operations can carry con-
straints such as type, pre and postconditions, behavioural and time related properties.
Our interpretation of the notion of service bears some resemblance to the Web service
notion: a service is defined as a public capability to perform a rather specialized set of

www.manaraa.com

Integration of Time Issues into Component-Based Applications 175

Decoder

IDinSound

IDoutSound

void stop()
void launch()
void sound()

void getSound()

Decoder

IDoutSound

void launch()
void sound()

Service

specifcation

Component

specifcation

Abstract

implementation of

AudioPlayer

Fig. 1. Example of artifacts

tasks (e.g. hotel room booking service). A given service provide means to solve one
application domain’s precise concern.

A component specification groups a set of services supported by the component im-
plementations. A component specification is more than a bundle of services: a com-
ponent specification gives additional constraints that pertain to the coordination of the
services. This resembles the specification of a compound Web service (a choreography)
built with an orchestration of other Web services.

An abstract implementation of components must adhere to a component specifica-
tion in order to implement a set of services. This abstract implementation publishes
additional information, such as the set of required services that the implementation re-
lies upon in order to perform its tasks, and bounds to quantitative properties of the
services that the component implementation provides. These bounds usually depend
on quantitative properties of the environment. An abstract implementation hides all
platform-specific details: it is a description suited to formal validation of composition,
and to computation of the properties of a composition. In other words, the abstract im-
plementation must contain all information needed to check for properties of individual
component and component assemblies while hiding all other details not needed by these
property checks.

A concrete component implementation is a code level entity that is runnable in a
component runtime environment. A concrete implementation must provide the services
of its associated abstract component implementation, together with the associated prop-
erties.

Each level (service specification, component specification and component imple-
mentation) conforms to languages or metamodels that define the fundamental con-
straints and properties of service and component models (for the sake of simplicity
we merge the concept of metamodel and language here). Fig 1 illustrates the three first
levels in UML2. In our tool chain implementation, we have selected languages and
metamodels that (1) support simultaneously constraints ranging from traditional type
compatibility up to real-time properties (e.g. timeliness), (2) are semantically sound,
(3) are supported by tools for validation, (4) allow for COTS implementation.

In order to define a notation suitable for timed specifications and abstract imple-
mentation, we have extended a subset of UML 2.0. We base our subset on existing
component based architecture concepts (components, ports, interfaces and connec-
tors) of the UML and extend them with time related features. The resulting notation

www.manaraa.com

176 S. Saudrais, N. Plouzeau, and O. Barais

(metamodel) is resembling those used by other approaches such as [23]. The design
model is organized in two main parts:

1. the service specification describes services that components will implement, in-
cluding time constraints;

2. the abstract implementation describes a component based architecture and provides
a definition of the component behaviour.

Every component metamodel must deal with a clear, sound and complete definition
of composition. In the UML 2.0, the composition semantics is not complete enough to
support formal definitions of component interactions.

A common notion of component compatibility relies on type compatibility mod-
els derived from object-oriented programming: two ports can be connected when the
port providing service exposes an interface subtyping the interface exposed on the port
requiring service. However, this type model has already shown its limits [24]. The com-
patibility between two operation prototypes cannot guarantee their correct use. To over-
come these limits, we rely on a “rich” black box model that includes timed behaviour
descriptions. These specification enrichments are commonly used in Design by Con-
tract software development techniques. They guarantee every component of a system
lives up to its expectations. In our approach, according to [7], we identify four levels
of contracts. The first level of contracts is based on classical type compatibility. The
second level deals with behavioural contracts and it strengthen the level of confidence
in a sequential context. A behavioural contract is a set of constraints defined as pre and
post conditions on an operation. The third level deals with synchronization contracts.
This level provides coordination rules in distributed or concurrency contexts, by explicit
specification of the observable behaviours of a component. The fourth level deals with
quantitative contracts, quantifies quality of service and the relevant contracts are usually
parameterized through a negotiation.

The designer should be able to design each level independently and should be able
to ensure at the design stage that the architecture obeys the component’s contracts.

In the UML 2.0 world, a service is associated with the definition of a provided in-
terface that specifies the operations that can be invoked. An abstract component speci-
fication is a set of services. It declares the interfaces provided by a component. These
interfaces are enriched with four levels of contracts. Several approaches have worked
on the first three levels. In section 3.2, we lay out a set of mechanisms to define and
integrate the fourth level related to the quality of service.

2.2 Abstract Implementation of an Architecture

The next step in the software development life cycle is the abstract implementation of
the component. By abstract implementation we mean the description of the component
implementation where we omit all details that are not necessary to understand how a
component interact with its environment along the time dimension axis. This step also
defines either a component’s internal structure (an assembly of other components) or
its behaviour and temporal specification. This section presents the structural concepts
for defining the architecture and the formalisms for the behavioural and the temporal
properties of components.

www.manaraa.com

Integration of Time Issues into Component-Based Applications 177

Fig. 2. Structural part of the component’s Metamodel

Structural Elements of the Component Model. The structural part of our component
model is largely derived from the UML 2.0 architecture metamodel concept. However,
contrary to the UML 2.0, we define an abstract model with fewer concepts to limit the
complexity of the language that the architect has to manipulate, and to remove all the
semantic variation points existing in UML 2.0.

Consequently, in our component model, a component provides methods and may
require some services from other components. Services can only be accessed through
explicitly declared ports. A port is a binding point on a component that defines two sets
of interfaces: provided and required ones.

Our component model distinguishes between two kinds of components: primitives
and composites. Primitives contain executable code and are basic building blocks in
component assemblies. Composites are used as a mechanism to deal with a group of
components as a whole, while potentially hiding some of the features of the subcom-
ponents. Our component model does not impose any limit on the levels of composi-
tion. There are, therefore, two ways to define the architecture of an application: using
a binding between components ports or using a composite to encapsulate a group of
components. A connector associates a component’s port with a port located on another
component. Two ports can be bound with each other only if the interfaces required by

www.manaraa.com

178 S. Saudrais, N. Plouzeau, and O. Barais

one port are provided by the other, and vice versa. This constraint on binding is the
classical type compatibility (level 1 contracts). The services provided and required by
the child components of a composite component are accessible through delegated ports
which are the only entry points of a composite component. A delegated port of a com-
posite component is connected to exactly one child component port. The structural part
of the component model is presented in Fig. 2.

Behaviour Specification. With the interface and method definitions, a component de-
clares structural elements about provided and required services. The behaviour spec-
ification defines the component’s interactions with its environment. This behaviour is
declared by a process algebra with the In and Out Automaton model [21] to check the
system.

Process algebra. To specify a component behaviour, we use a reduced process algebra
inspired by FSP [22]. This process algebra is based on an expression describing a set
of traces (sequences of events). When applied to components, an event is an abstraction
of a method call or response to a call. For example, a call of m1 on the interface i1 of
the port p1 is captured as p1.i1.m1, a response to the call as p1.i1.m1$. Every event
is emitted by a component and accepted by another component. Calling m1 via the
interface i1 of the Port p1 is seen as the emission of !p1.i1.m1 by the component C1
(denoted by an event token of the form !C1.p1.i1.m1); at the same time the reception
of p3.i2.m1 is accepted by C2 (denoted as ?C2.p3.i2.m1 from the perspective of C2).

The operators employed in behaviour protocols are: → for sequencing, | for alterna-
tive choice and ∗ for a finite repetition. This algebra is used to represent the behaviour
of primitive components only.

The I/O automaton model. Besides a process algebra, we use an I/O automaton formal-
ism to perform checking.

Definition 1. (I/O automaton)
An Input/Output automaton is a tuple (S, L, T, s0) where:

– S is a finite non empty set of states,
– L is a finite non empty set of labels. L = I

⋃
O where I is a set of inputs and O

the outputs and I
⋂

O = ∅,
– T ⊆ S(L

⋃
{τ})S is the finite set of transitions where τ is an non observable

internal action.
– s0 is an initial state, an element of S.

Composition of I/O automata. The composition of components in our system is based
on the synchronization of an output of a component with the input of a connected
component[10].

The composition of I/O Automata is associative and commutative. When the archi-
tect composes several components, the composition order is irrelevant.

This process algebra can be seen as a textual representation of a subset of the sequence
diagram where the roles, identified in the diagram, are the port of the component.

www.manaraa.com

Integration of Time Issues into Component-Based Applications 179

AudioPlayer

IAPoutsound

void launch()
void sound()

Decoder
IDinsound

IDoutsound

void launch()
void sound() void

getSound()

Extraction
IEinsound

void
getSound()

Source

ISread IEread

void Read()

void Read()ISlaunch

IElaunch

void
start()

void start()

Launch

void start()

1

Behaviour of

Decoder

s0

S1
launched

s2

S3

started
s4

s5

s6

S7

rec_

sound

?launch

!launch$

!start

?start$

?getSound

!getSound$
!sound

?sound$

Fig. 3. Example of an audio player component

Example. Figure 3 illustrates the model with an example of component Audio-
Player. The AudioPlayer component provides an IAPoutsound interface that
contains methods launch and sound. It is composed of 3 components: Decoder,
Extraction and Source. The top side shows the structural representation of the
component in UML 2.0. The bottom of Figure 3 shows an automaton A1 describing all
possible behaviours of the Decoder.

3 Adding Time Properties into Components

After defining all functional properties in the component, the designer may add some
extra-functional properties into it. These extra-functional properties include dense time
properties. In order to add time properties to the components we will modify add time
information in two different places: on behaviour specifications and on contracts at-
tached to required interfaces. These two places represent what the component provide
and require and are used during the composition of components. In order to add time to
component behaviour, we use the Timed Automata theory [5]. Furthermore, we define

www.manaraa.com

180 S. Saudrais, N. Plouzeau, and O. Barais

time patterns to help the designer with the definition of time contracts. Our formal-
ism for such contracts is based on a timed temporal logic (Timed Computation Tree
Logic [4]).

3.1 Adding Time into Component’s Behaviour

While time logic is used to specify contracts, one also needs a means to specify the
time properties of abstract implementation of components. Since automata are already
used to describe component behaviours, we rely on timed automata (TA) to add precise
timing constraints on these behaviours.

Timed Automata. A timed automaton is an automaton extended with clocks, which
are a set of variables increasing uniformly with time. Formally, a timed automaton is
defined as follows:

Definition 2. (Timed Automaton) A timed automaton is a tuple A =<
S, X, L, T, ι, P > where:

– S is a finite set of locations,
– X is a finite set of clocks. To each clock, we assign a valuation v ∈ V , v(x) ∈ R+

for each x ∈ X .
– L is a finite set of labels,
– T is a finite set of edges. Each edge t is a tuple < s, l, ψ, , s′ > where s, s′ ∈ S,

l ∈ L, ψ ∈ ΨX is the enabling condition. ΨX is the set or predicates on X defined
as x ∼ c or x − y ∼ c where x, y ∈ X and ∼∈ {<, ≤, =} and c inN .

– ι is the invariant of A. ι ∈ ΦX where ΦX is the set of functions φ : S → ΨX

mapping each location s to a predicate ψ,
– P associates a set of atomic propositions to each location.

A state of an automaton is a location and a valuation of clocks that satisfies the invariant
of that location. Two different types of state transition exist: discrete transitions and
timed transitions.

Timed Patterns. In order to ease the addition of time constraints to behaviour, we have
defined a set of time patterns based on those partially defined in [14]: response time,
delay, execution time, period of service call, duration, etc. We explain hereafter two of
these timed patterns: response time and execution time.

Response time. The response time pattern enables the expression of a response time
with a timed automaton. The response time is the delay between a service call and its
acknowledgment. For example, to express a response time on the getSound service,
one needs to initialize a clock when calling getSound; to receive the acknowledgment,
one checks if the clock value is correct with respect to a defined value. This pattern
requires three parameters: the service call service, the operator ∼∈ {<, ≤, =, ≥, >}
and the value c. The RT automaton on Figure 4 represents the generic response time
pattern. The pattern consists in three locations, two transitions and one clock. The
clock is initialized on the first transition with the service call and checked in the sec-
ond one with the acknowledge of the service. The second location has the property

www.manaraa.com

Integration of Time Issues into Component-Based Applications 181

call_service_

begin

call_service_

end

service ; x:=0 service$; x ~ c

execution_

message_

begin

execution_

message_end

message ; x:=0 x ~ c

Fig. 4. Response time and execution time patterns

call service begin and the third one call service end. These properties will be used
for checking contracts. When the pattern will be added to the component’s behaviour,
the two transitions need be not consecutive, other transitions can be inserted between
them. This is represented on RT by the dotted line between the second location and the
second transition.

Execution time. The execution time pattern is used to represent an execution with a
timed automaton. The execution time is the time used to do a processing. For example,
after receiving the response to a service call, the component requires some processing
time. The pattern has three parameters: message message, operator ∼ and value c. The
automaton ET on Figure 4 represents the generic execution time pattern. The pattern
consists in three locations, two transitions and one clock. The clock is initialized on the
first transition with the message to be processed and checked in the second transition
without any message. The second location has the property execution message begin
and the third one execution message end. These properties will be used to check
TCTL formulas. In contrast with the response time pattern, the two transitions must
be consecutive because the component is used by the processing and cannot compute
something else. This is why the second transition and the third location do not exist in
the component’s behaviour; they will be created when the pattern will be applied. This
way of adding the pattern is not the only one, we can define an execution time pattern
where the clock check is added to every outgoing transition of the second location.

Timed Behaviour. After defining a set of patterns, we will add them to the com-
ponent’s behaviour. The designer selects the different patterns with their parameters.
They will be automatically integrated to the component’s behaviour. We will illustrate
this design process by adding two timed patterns to the component’s behaviour of the
example. First, we select the timed pattern response time with the getSound service
call, the < operator and the value 4. For this pattern we add a clock x1 to an automa-
ton. This clock is initialized on the ?getSound transition from the location s5. The
call getSound begin property is added to the targeted location of this transition, in
location s5. Then we select the transition !getSound$, add the guard x1 < 4 and add

www.manaraa.com

182 S. Saudrais, N. Plouzeau, and O. Barais

s5

call_

?getSound_

begin

s6

call_

?getSound_

end

TA1

?launch

!launch$

!start

?start$

?getSound

X1:=0

!getSound$

X1<4
!sound

?sound$

s0

S1

launched

s2

S3

started
s4

S7

rec_sound

RT

call_

?getSound

_begin

call_

?getSound

_end

?getSound ;

x:=0

!getSound$;

 x ~ c

s0

S1
launched

s2

S3

started
s4

s5

s6

S7

rec_

sound

?launch

!launch$

!start

?start$

?getSound

!getSound$
!sound

?sound$

Fig. 5. Adding response time patterns to component’s behaviour

the property call getSound begin to the target of the transition. The result is shown on
the TA1 of figure 5.

Second, we add the pattern execution time with message !getSound$, operator <
and value 2. A second clock x2 is added to the automaton and it is initialized on the
transition !getSound$. We add a new location s6 exec and a transition between s6
and s6 exec with the guard x2 < 2. The outcoming transitions of s6 of TA1 become
the outgoing transitions of s6 exec. The properties execution !getSound$ begin and
execution !getSound$ end are respectively added to s6 and s6 exec. The new au-
tomaton of the component is shown on the TA2 of figure 6. The new behaviour of the
component does not change with respect to the original one : you can obtain A1 from
TA2 by removing the clock and the transition without a label.

3.2 Adding Time into a Component Contract

Component contracts are part of a component specification; they are bound to ports
to describe type, state and behaviour properties that must be enforced by component
implementations. In this section we show the addition of time contracts expressed with
a timed temporal logic named TCTL [4]. These new contracts will be checked during
the composition phase against the timed automata to validate the compatibility between
two components.

TCTL. TCTL is an extension of CTL [13] with quantitative temporal operators.
In CTL, a formula ∃�p is satisfied if and only if predicate p can become true along

some computation path, without any information about the instant p evaluates to true.
The TCTL extension is able to handle quantitative constraints: for example formula

www.manaraa.com

Integration of Time Issues into Component-Based Applications 183

S5

P1

P2
S6_exec

P3
?launch

!launch$

!start

?start$

?getSound;

X1:=0

!getSound$;

X1<4;

X2:=0

!sound

?sound$

X2<2

s0

S1

launched

s2

S3

started
s4

S7

rec_sound

s6

P2=call_?getSound_end and execution_!getSound$_begin

P1=call_?getSound_begin

P3=execution_!getSound$_end

execution_

!getSound$

_begin

execution_

!getSound$

_end

ET(!getSound$,<,2)

!getSound$;

x:=0

x < 2

Fig. 6. Adding execution time patterns to component’s behaviour

∃�<5p is true if and only if along some computation path property p becomes true
within 5 time units.

Let P be a set of properties and N be the set of natural numbers:

Definition 3. (Syntax) The formulas ψ of TCTL are defined as follows:
ψ := p|false|ψ1 → ψ2|∃ψ1U∼cψ2|∀ψ1U∼cψ2

where p ∈ P , c ∈ N , and ∼∈ {<, ≤, =, ≥, >}.

Abbreviations are defined by:

– ∃�∼cψ for true∃ (possibility),
– ∀�∼cψ for true∀U∼cψ (all locations along all computations),
– ∃�∼cψ for ¬∀�∼c¬ψ,
– ∀�∼cψ for ¬∃�∼c¬ψ (some locations along all computations).

We prohibit the use of more than one clock in a given expression in order to avoid
the forward analysis problem[9].

Timed Contract. The timed contracts are attached to the required interfaces of a com-
ponent, like the three other types of contract. To use the definition of these timed con-
tracts, we define a set of patterns based on [19]. These contract patterns are skeletons,
which must be completed by the designer. A designer may also write contracts directly

www.manaraa.com

184 S. Saudrais, N. Plouzeau, and O. Barais

in TCLT. To create a new timed contract, the designer selects the appropriate pattern
and provides parameter values. Some examples of patterns are:

– time response of c of service call foo : call foo begin → ∀�(∀�∼ccall foo end)
– period of c of the property p : ∀�(∀�∼cp)
– time of c between two property p1 and p2 : p1 → ∀�(∀�∼cp2)

Other contracts are automatically created when timed patterns are added by the de-
signer. For example, if the response time pattern is chosen with an external service call,
(e.g. service ?getSound), the contract is implicitly included in this pattern. The formula
in TCTL is created with the parameters of the timed pattern.

3.3 Checking Time Properties When Composing Components

As described in the previous sections, we use timed logic for specification of compo-
nents and timed automata to describe abstract implementations of these components.
Since we use formally defined notations, we are able to use software tools for valida-
tion of implementations against specifications. To check the time properties during the
composition process, we use the Kronos tool [11], which is able to evaluate TCTL for-
mulas on timed automata. The behaviour of each primitive component is modeled by
timed automata and the timed contracts are expressed in the real-time temporal logic
TCTL. When a timed automaton does not satisfy a formula, Kronos identifies the lo-
cations where the formula does not hold. For instance, if the environment’s contracts
are :

– receive sound periodically with 7 units of time : ∀�(∀�<7rec sound)
– receive sound at least 5 units of time after sending launch :

launched ⇒ ∀�(∀�<5rec sound)

Kronos answers true when provided with the timed automaton and the first formula.
When we provide Kronos the second formula, the tool answers that the formula does
not hold and gives the previous locations of where rec sound is true.

4 Related Work

Architecture level timing analysis will not come as a replacement for lower-level tim-
ing analysis that can be performed once all the detailed design step is achieved. It aims
at validating the system early in the development process. To perform such an analy-
sis, an abstract model of the internal behaviour of the components must be known (in-
cluding estimation of computing times, which can be obtained from a WCET analysis
for pre-existing components and by a first evaluation for other ones). In this section,
we discuss the different existing models that can be used to describe time proper-
ties in a the component behaviour. Next, this section comes back on the issue of the
separation of concerns between time properties and functional properties in software
modeling.

www.manaraa.com

Integration of Time Issues into Component-Based Applications 185

UML Profiles, ADLs and Component Models

There are several component based models dedicated to the design of real-time appli-
cations. For example, in the UML community several profiles have been proposed to
add time information at the modeling level. CQML [3] is a lexical language designed
for QoS specification. It can be integrated with UML and can be used at different lev-
els of abstraction. However, CQML is poorly tooled. Consequently, it can not be ef-
ficiently used in a software development process. The OMEGA project [2] provides
formal methods to check the consistency of UML 2.0 models. The OMEGA approach
deals with the specification level only but without link to component-based applica-
tions. In the domain of component-based software architecture, the AADL is a new
international standard for predictable model-based engineering of real-time and em-
bedded software [26]. Mainly inspired by MetaH [29], its fields of application are auto-
motive, avionics, space and industrial control systems. AADL is a lower-level modeling
language than UML or other component models used at the modeling level. Main con-
cepts manipulated by this language are components, ports, threads, communication bus,
etc. AADL models describe software topologies bound to execution platform topolo-
gies. AADL is interesting for two reasons. Far-off the concern of this article, it provides
a mechanism of mode to model the reconfiguration of statically-known systems. Sec-
ondly, more relevant for this paper, it was one of the first ADL to model the quality
of service in a component based software architecture. It can model times properties or
latency. Nevertheless, AADL is a low-level ADL, directly connected to the implementa-
tion. Besides, there is currently no way to help the designer to integrate time properties
in an existing component based software architecture.

Several toolboxes for real-time modeling exist. Uppaal [20] is an integrated tool
environment for the modeling, the validation and the verification of real-time systems
defined as networks of timed automata. Uppaal is able to evaluate CTL formulas on
timed automata but can not check TCTL formulas. Consequently, it cannot be used to
evaluate QoS contracts expressed on the component interfaces but can be used for the
third level.

All the models presented in this section support the description of the architecture
and aim at validating the architecture of a system with respect to its timing requirements
(e.g. basic and end-to-end deadlines, throughput, etc.). However, two main problems
limits their use in a concrete system development process. First, most of these models
are not connected to a concrete component platform. Consequently, analysis performed
at design time are lost to the implementation. Secondly, due to a lack of separation of
concerns in the software development process, time properties and functional properties
has to be managed at the same time.

To solve the issue of the gap between the modeling stage and the development stage,
BIP [6] provides a framework to model heterogeneous components. The BIP compo-
nent model is the superposition of three layers: the lower layer describes the behaviour
of a component as a set of transitions; the intermediate layer includes connectors
describing the interactions between transitions of the layer underneath; the upper layer
consists of a set of priority rules used to describe scheduling policies for interactions.
BIP components can be extended with clock variables, but the time model is then a

www.manaraa.com

186 S. Saudrais, N. Plouzeau, and O. Barais

discrete and simulated one. For instance, BIP can not embed time contracts such as
TCTL contracts. Besides, BIP does not provide any mechanism to handle contract vio-
lations.

Separation of Concerns

Improving the separation of concerns in a component based software architecture comes
from a very natural analogy: Just like in an house architecture we have distinct view/-
plan/blueprints describing distinct concerns of the same house (walls and spaces, elec-
trical wiring, water conducts), it seems reasonable to conceive a software architecture
description as the composition of several concerns specifications reflecting several per-
spectives of the same software system. With this kind of analogy, it seems natural to
view time as a separated concern that must be integrated with the rest of the architec-
ture.

In this trend, the Accord methodology proposed in [28] defines a technique based on
aspect oriented design to support separation of concerns in real-time component based
architectures. The associated component model is tuned to allow the computation of
worst case execution time of woven parts rather than general analysis techniques on
abstract components.

Klein et al. propose a semantic-based weaving of scenarios [18], where the weaving
is based on the dynamic semantics of the models used. This work relies on Message
Sequence Charts (MSC) as a language of scenarios, but MSC and I/O automata used
to specify the behaviour are similar languages for the weaving operator point of view.
Nevertheless, the weaving operator can help the designer to integrate aspect behavioural
specification but it does not support timed automata and the integration of QoS in the
component specification. Our approach can be seen as a first step to support the weav-
ing of time, although currently we do not provide any pointcut language to specify
integration of our time based patterns.

5 Conclusion and Perspectives

The separation of concerns make the design easier, improve the testability and the soft-
ware maintainability. The separation of concerns is often used to modularize in sepa-
rated units some technical concerns like security, persistence or traceability. This paper
addresses time as a concern and proposes mechanisms to help the designer to integrate
time QoS information during the specification and the design of a component based
software. For example, this approach highlights patterns for the behaviour and the con-
tracts definition.

The work presented in this paper is a part of a global approach that aims to decrease
the gap between the specification model and the implementation [27]. It proposes a
unified approach to the design and implementation of component based systems. This
approach aims at assisting architects in the design and in the implementation of real-
time systems by providing a set of tools that check the consistency of the artifacts used
to create these systems. This approach is based on an extension of the UML 2.0 standard
used to design the services provided by components, to specify components and to give

www.manaraa.com

Integration of Time Issues into Component-Based Applications 187

a first abstract implementation of the systems. Using a Model Driven Engineering style,
the approach provides code generation capabilities that clearly separate functional part
based on the Fractal Component Model [12] and QoS part based on the Giotto frame-
work [16]. The patterns proposed in this paper are mainly useful at the design stage.
They allow to design the software without QoS information and add these information
in a second stage.

We are currently working on implementing these patterns as an aspect at the model
level. The goal is to design a new primary artifact at the model level to be able to reuse
QoS models. Besides, we want to define a expressive pointcut language to simplify the
integration of the same QoS model into several component based software architectures.
It will also allow the QoS layer to be composed with other aspects of the architecture.

References

1. MARTE UML profile RFP. voted at OMG.
http://www.omg.org/cgi-bin/doc?realtime/2005-02-06

2. Webpage of the OMEGA IST project. http://www-omega.imag.fr/
3. Aagedal, J.O.: Quality of Service Support in Development of Distributed Systems. PhD the-

sis, Department for Informatics, University of Oslo (June 2001)
4. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Information and

Computation 104(1), 2–34 (1993)
5. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
6. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in bip. In:

SEFM ’06. Proceedings of the Fourth IEEE International Conference on Software Engineer-
ing and Formal Methods, Washington, DC, pp. 3–12. IEEE Computer Society Press, Los
Alamitos (2006)

7. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D.: Making components contract
aware. Computer 32(7), 38–45 (1999)

8. Bollella, G., Gosling, J.: The real-time specification for java. Computer 33(6), 47–54 (2000)
9. Bouyer, P.: Untameable timed automata! In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS,

vol. 2607, pp. 620–631. Springer, Heidelberg (2003)
10. Bouyer, P., Petit, A.: Decomposition and composition of timed automata. In: Wiedermann, J.,

van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 210–219. Springer,
Heidelberg (1999)

11. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A model-
checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427,
Springer, Heidelberg (1998)

12. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: An open component
model and its support in java. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K.
(eds.) CBSE 2004. LNCS, vol. 3054, pp. 7–22. Springer, Heidelberg (2004)

13. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8(2), 244–
263 (1986)

14. Graf, S., Ober, I.: A real-time profile for UML and how to adapt it to SDL. In: Reed, R.,
Reed, J. (eds.) SDL 2003. LNCS, vol. 2708, Springer, Heidelberg (2003)

15. Graf, S., Ober, I.: How useful is the UML real-time profile SPT without semantics. In:
SIVOES 2004, associated with RTAS 2004, Toronto Canada (submitted for publication)
(April 2004)

http://www.omg.org/cgi-bin/doc?realtime/2005-02-06
http://www-omega.imag.fr/

www.manaraa.com

188 S. Saudrais, N. Plouzeau, and O. Barais

16. Henzinger, T.A., Kirsch, C.M., Horowitz, B.: Giotto: A time-triggered language for embed-
ded programming. Proceedings of the IEEE 91(1), 84–99 (2003)

17. Kalibera, T., Tuma, P.: Distributed component system based on architecture description:
The sofa experience. In: Meersman, R., Tari, Z. et al. (eds.) CoopIS 2002, DOA 2002, and
ODBASE 2002. LNCS, vol. 2519, pp. 981–994. Springer, Heidelberg (2002)

18. Klein, J., Hélouët, L., Jézéquel, J.M.: Semantic-based weaving of scenarios. In: Proceed-
ings of the 5th international conference on Aspect-oriented software development, pp. 27–38
(2006)

19. Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: Inverardi, P., Jazayeri, M.
(eds.) ICSE 2005. LNCS, vol. 4309, pp. 372–381. Springer, Heidelberg (2006)

20. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Int. Journal on Software Tools for
Technology Transfer 1(1-2), 134–152 (1997)

21. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. CWI Quarterly 2(3),
219–246 (1989)

22. Magee, J.: Behavioral analysis of software architectures using ltsa. In: Proceedings of the
21st international conference on Software engineering, pp. 634–637. IEEE Computer Society
Press, Los Alamitos (1999)

23. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Transactions on Software Engineering 26, 23 (2000)

24. Meyer, B.: Applying design by contract. Computer 25(10) (October 1992)
25. Object Management Group OMG. UML Profile for Schedulability, Performance, and Time

Specification, Version 1.1. (January 2005)
26. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis & Design Lan-

guage (AADL). SAE Standards no AS5506 (November 2004)
27. Saudrais, S., Barais, O., Duchien, L.: Using model-driven engineering to generate qos mon-

itors from a formal specification. edocw 0, 45 (2006)
28. Tesanovic, A.: Aspects and components in real-time system development: Towards reconfig-

urable and reusable software. Journal of Embedded Computing 1(1), 17–37 (2005)
29. Vestal, S.: Fixed-priority sensitivity analysis for linear compute time models. IEEE Transac-

tions on Software Engineering 20(4) (1994)

www.manaraa.com

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 189–202, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Slicing of Component Behavior Specification with
Respect to Their Composition*

Ondřej Šerý1 and František Plášil1,2

1 Charles University in Prague, Faculty of Mathematics and Physics
Department of Software Engineering

Malostranske namesti 25, 118 00 Prague 1, Czech Republic
{sery, plasil}@dsrg.mff.cuni.cz

http://dsrg.mff.cuni.cz
2 Academy of Sciences of the Czech Republic

Institute of Computer Science
plasil@cs.cas.cz

http://www.cs.cas.cz

Abstract. Being an important means of reducing development costs, behavior
specification of software components facilitates reuse of a component and even
reuse of a component’s architecture (assembly). However, since typically only a
part of the components’ functionality is actually used in the new context, a
significant part of the behavior specification may be superfluous. As a result, it
may be hard to see (and filter out) the actual interplay among the components in
their behavior specification. This paper targets the problem in the scope of
behavior protocols. It presents a technique for slicing behavior protocols with
respect to a given context (composition), designed to remove the unused
behavior from a behavior specification. The technique is based on a formal
foundation, generic enough to support slicing with respect to a property
expressed as a predicate. To demonstrate viability of the proposed approach, a
positive experience with behavior specification slicing applied in real-life case
study is shared with the reader (along with a short description of a prototype).

Keywords: Components-based software engineering, Behavior specification,
Software architecture reuse.

1 Introduction

When reusing a software component (such as a COTS component) in a component-
based application, it is likely that only a part of its functionality will be actually used.
Assuming a behavior specification of the component is available, a significant part of
it may be superfluous in the given application. As a result, it is hard to read and
comprehend the actual interplay among the components from their behavior
specification. A similar issue arises when reusing a component architecture

* This work was partially supported by the Grant Agency of the Czech Republic project

201/06/0770. The results will be applied in the ITEA/EUREKA project OSIRIS Σ!2023.

www.manaraa.com

190 O. Šerý and F. Plášil

(assembly) in a new environment, employing only a part of the provided
functionality. In order to make the behavior specification relevant only to the specific
application and, as a pleasant side effect, facilitate human comprehension of the
actual interplay among the components, it is desirable to find methods for slicing the
behavior specification to make it contain only the parts really used in a specific
component composition and/or environment. This also helps clarify the actual roles of
individual components.

Fig. 1. Architecture of the demo component application, the airport internet providing service

The problem can be illustrated on a demo component application (Fig. 1), designed
as a part of the Fractal Component Reliability Extension (CRE) project [7]. The aim
of the project was to enhance Fractal component model by behavior specification and
to provide tools for its analysis. The demo application constitutes an airport service
for providing a wireless internet connection (to the owners of first or business class
tickets, to the frequent flayer and credit card holders). As to the top-level components,
Firewall realizes the firewall for blocking unauthorized internet connections
by redirecting them to the login web page. The FlyTicketDatabase and

www.manaraa.com

 Slicing of Component Behavior Specification with Respect to Their Composition 191

FrequentFlyerDatabase components mediate access to the databases of
airlines companies. CardCenter communicates with the bank credit card services
and AccountDatabase encapsulates accounts with prepaid internet connection.
The Token component is a dynamically created entity representing a single logged
user. All communication is orchestrated by Arbitrator, while DhcpServer
manages dynamic IP address allocation with support for use of the permanent IP
address database. This database, mapping Mac to IP addresses, could be connected
via the IIpMacPermanentDb interface and its use be triggered on via the
IManagement interface. However, both these interfaces are left unbound, since
permanent IP address allocation is not used in the application. The behavior of about
twenty components was specified via the formalism of behavior protocols [17] and,
using a behavior protocol checker, the behavior compliance of these components was
verified.

Assume now an internet provision service in a public garden (payment by credit
card only). Evidently, the component architecture in Fig. 1 can be reused for such a
purpose. A necessary modification involves simplification of DhcpServer (no
permanent addresses), and of Arbitrator (no airport-specific logins). Obviously,
it would be very confusing to see any FlyTicketDatabase and Frequent-
FlyerDatabase-related behavior in the specification of these modified
components. Thus, slicing of behavior specification with respect to actual component
architecture (composition) is desirable.

1.1 Behavior Protocols

The formalism of behavior protocols [17] was developed for behavior specification of
software components. As a behavior, the desired finite sequences of method calls on
component’s interfaces (their interplay) are considered, abstracting from method
parameters and internal data. Behavior protocol specifying behavior of a particular
component is called its frame protocol.

Being a specific process algebra [3], behavior protocol P is an expression that
generates a set of traces of method calls (the language L(P)). More precisely, a trace
is a sequence of tokens representing atomic events related to method invocations (?a↑
stands for accepting a method invocation, !a↑ issuing an invocation, ?a↓ means
accepting the response (end) of a method execution, !a↓ means issuing the response).
Syntactically, a behavior protocol is composed of tokens, operators (“;” sequencing,
“+” alternative, “*” repetition, and “|” parallel interleaving), and abbreviations ?a
(stands for ?a↑; !a↓), ?a{P} (stands for ?a↑; P; !a↓), and similarly for !a, and !a{P}.

In Fig. 2, there is a frame protocol of the DhcpServer component from Fig. 1.
The meaning of the protocol is as follows. On its required interface
IDhcpCallback, the DhcpServer calls IpAddressInvalidated (line 2)
when an IP address lease expires. The call can be arbitrarily repeated (“*”). In parallel
to this (“|”), DhcpServer can accept calls on the IManagement provided
interface (lines 4–15). The IManagement interface provides means for mode
switching between random IP address assignment and persistent MAC to IP address
mapping via the IIpMacPermDb interface (!IIpMacPermDb.GetIpAddress*
at line 7). Since a request for stopping permanent address assignement can come

www.manaraa.com

192 O. Šerý and F. Plášil

while !IIpMacPermDb.GetIpAddress* is in progress (“|”), this has to be
captured by explicitly stating requests and responses of the mode switching calls in
order to achieve synchronization.

Behavior protocols introduce special case of parallel composition (known from
process algebras), the consent operator ∇. Similar to parallel composition, e.g. in
CCS, the consent operator produces interleaving of events, while merging the invoke
“!” and accept “?” events with the same name into an internal event (prefixed by “τ”).
Moreover, the consent operator identifies communication errors: bad activity – the
issued event cannot be accepted, no activity (deadlock) – all of the ready events’
tokens are prefixed by “?”, and infinite activity (divergence) – the composed protocols
“cannot reach their final events at the same time”, so that the composed behavior
would contain an infinite trace (only finite traces are allowed). Technically, these
communication errors are reflected by ∇, appending the erroneous traces with error
events (!ε, ∅ε, and ∞ε for bad activity, no activity, and infinite activity errors,
respectively). For more information, the reader is referred to [1].

Fig. 2. DhcpServer frame protocol

To illustrate use of the consent operator, suppose that the architecture of the
composed DhcpServer component is to be checked for correctness of its internal
communication—horizontal compliance. This is achieved by applying the consent
operator to the frame protocols of all subcomponents of DhcpServer and finding
out whether the resulting language: L(FPIpAddressManager ∇ FPDhcpListener ∇ FPTransientIpDb
∇ FPTimer), contains any erroneous trace. If so, the internal communication can
generally result in a communication error. Another important task is to check whether
the architecture of the composed DhcpServer component obeys its frame
protocol—vertical compliance. For this purpose, the inverted frame trick is used, i.e.
the frame protocol of DhcpServer is inverted (“?” are substituted by “!” and vice

line#
 1 (
 2 !IDhcpCallback.IpAddressInvalidated*
 3 |
 4 (
 5 ?IManagement.UsePermanentIpDb↑ ;
 6 (
 7 !IIpMacPermDb.GetIpAddress*
 8 |
 9 (
 10 !IManagement.UsePermanentIpDb↓ ;
 11 ?IManagement.StopUsingPermanentIpDb↑
 12)
 13) ;
 14 !IManagement.StopUsingPermanentIpDb↓
 15)*
 16)

www.manaraa.com

 Slicing of Component Behavior Specification with Respect to Their Composition 193

versa) and the inverted protocol is composed with the protocol of the architecture:
L (FPDhcpServer

-1 ∇ FPIpAddressManager ∇ FPDhcpListener ∇ FPTransientIpDb ∇ FPTimer). The result is
then sought for erroneous traces. The key idea behind the trick is testing the architecture
in the most general environment of DhcpServer, represented by its inverted frame
protocol FPDhcpServer

-1. It is worth noting that the consent operator does not correspond to
equivalences known from process algebras. It is just a smart parallel composition
operator, which can explicitly insert error events (!ε, ∅ε, and ∞ε) into resulting traces.
Consequently, the vertical compliance corresponds to subtyping, as the internal
architecture of a composed component is required to correctly implement (i.e. without
communication errors) the behavior specification of the composed component. This
relation is not an equivalence between behavior specifications, as it permits the internal
architecture to potentially feature additional behavior which is not employed in the
environment determined by the frame protocol of the enclosing component.

1.2 Goal and Structure of the Paper

The goal of the paper is to propose a way of reducing frame protocols of components
with respect to a particular component composition (architecture/assembly) in order
to omit the unused parts of the behavioral specification. This should clarify the actual
role of each component in their composition and make understanding of the overall
behavior interplay of the components easier.

This goal is reflected in the structure of the paper as follows. Formal foundation of
behavior protocol reductions and protocol slicing is provided in Sect. 2, while Sect. 3
introduces slicing with respect to composition and proposes a technique to achieve
this kind of protocol reduction. The last sections are devoted to a prototype’s
description, related work discussion, and a conclusion.

2 Reduction and Slicing of Behavior Protocols

2.1 Reduction Preorder

First of all, it is necessary to formalize the notion of reduction; i.e. to define when a
behavior protocol can be considered a reduction of another one. For this purpose, the
notion of substitutability of components (and their behavior protocols) is crucial.
Suppose that a component B working in an environment EnvB without any
communication errors (Fig. 3-a) is to be substituted by another component A and each
of them is associated with its frame protocol.

Definition 1. A behavior protocol a is substitutable for a behavior protocol b, if
L(a ∇ b-1) does not contain any trace with communication error. A component A is
substitutable for a component B, if the frame protocol of A is substitutable for the
frame protocol of B.

In other words, Def. 1 says that a component A is substitutable for another component
B, if by placing A to the most general environment of B (described by the inverted
protocol b-1) does not result in any communication error. Thus A can be safely placed
into any environment EnvB of B (Fig. 3-b), assuming B is working without any
communication errors in this environment.

www.manaraa.com

194 O. Šerý and F. Plášil

Having the substitutability defined, the next step is to formalize the reduction itself.
The basic idea is as follows: A component Bred with a reduced frame protocol bred
working in an environment Envred, can be replaced by a component B with the frame
protocol b, provided b is substitutable for bred and L(bred) ⊆ L(b), Fig. 3-c. This is
captured by defining a reduction preorder ≤R over behavior protocols in Def. 2. For
the proof that the relation ≤R is really a preorder, the reader is referred to [19].

Definition 2. Let bred and b be behavior protocols. bred is reduction of b, bred ≤R b, if b
is substitutable for bred and L(bred) ⊆ L(b).

Fig. 3. Motivation for protocol reduction basic definitions

Intuitively, the reduction bred of b is obliged to describe only a subset of the traces
described by the protocol b (L(bred) ⊆ L(b)). Furthermore, the original protocol b has
to be substitutable for its reduction bred. This is required to assure that any architecture
(Envred) designed using the reduced virtual component Bred can safely use any
component B described by the original protocol b instead of Bred. Thus the designer
can safely use the simpler reduced protocol bred and be sure that the resulting
architecture will function correctly even with a component featuring the more
complex original protocol b.

2.2 Minimal Reduction

The reduction preorder presented in Sect. 2.1 constitutes a formal instrument for
deciding whether a protocol is a valid reduction of another one and for formalizing a
set of valid reductions of a given protocol. However, the typical requirement is to find
“in some sense” the minimal reduction of a given protocol. Furthermore, there is

www.manaraa.com

 Slicing of Component Behavior Specification with Respect to Their Composition 195

usually a constraint the resulting reduction should satisfy, so the goal is to find the
minimal reduction satisfying the constraint (represented as a predicate C over
languages in Def. 3). What the constraint actually is follows from the concrete type of
the reduction, e.g. there is a set of important traces that should be preserved in the
reduction (the actual constraint predicate for reduction with respect to composition is
to be discussed later in Sect. 3). The minimal reduction could be straightforwardly
defined as follows.

Definition 3. Let b be a behavior protocol over the alphabet Σ and C a predicate over
2Σ* (the constraint). A behavior protocol bred is a minimal reduction of b satisfying C,
if bred ≤R b, C(L(bred)) holds, and there is no behavior protocol c such that c ≤R bred,
C(L(c)) holds, and L(c) ⊂ L(bred).

Even though such a definition seems natural, there are several issues to address: First,
the minimal reduction is generally not unique, i.e. more minimal reductions can exist
(even infinitely many, since, e.g. L(a) = L(a+a+…)). Second, the actual syntactical
form of the protocols is not considered—the semantics of reduction is based on the
languages generated by the protocols only. Third, if one tries to address the first two
issues by requiring the minimal reduction to be the shortest one, then finding such a
minimal reduction is a PSPACE complete problem. This follows from the close
relation between regular expressions and behavior protocols and the well known fact
that minimizing a regular expression is a PSPACE complete problem [9], [12], and
[14] (a full-fledged justification is out of scope of the paper).

These observations trigger the need to develop a technique for finding reductions
that would: i) assure uniqueness of the result, ii) take the actual syntactical form of the
protocols into consideration, iii) be of a “reasonable” computational complexity, and
iv) adhere to the reduction preorder as defined in Sect. 2.1. Such a technique—
protocol slicing—is proposed in Sect. 3. It is based on the slice concept:

Definition 4. Let a and b be behavior protocols. We say a is slice of b, if a is
reduction of b (a ≤R b) and the syntax tree of a is derived by pruning the syntax tree
of b.

In other words, the protocol reduction concept is based on the languages generated by
the protocols, whereas protocol slicing brings into account also the syntactical form of
the protocols by pruning the syntactical tree of the protocol to be reduced. In
consequence, given a protocol b and a constraint C, there can be no minimal reduction
of b being also a slice of b. For instance, consider the protocol ?a* and the constraint
that the method a will be called sequentially three times (more formally, the predicate
C is defined as C(L) ≡ (<?a; ?a; ?a> ∈ L), where L is a language), then the protocol
?a* can be minimally reduced to ?a; ?a; ?a. On the other hand, there are only two
slices of the protocol: NULL and ?a*, i.e. it is either sliced to empty protocol (which
does not satisfy the constraint of three ?a), or remains unmodified. However, in
general, slicing is practically more important than “optimal, language-based”
reduction, since the former inherently means simplification of a protocol, while the
latter can result in a blow-up of the protocol. For example, consider again the
DHCPServer frame protocol in Fig. 2 and assume that the repetition on the lines

www.manaraa.com

196 O. Šerý and F. Plášil

4–15 is to be repeated 3 times. The corresponding minimal reduction takes the form
depicted in Fig. 4. Obviously, this reduction result becomes hard to read.

Definition 5. Let a be a behavior protocol over the alphabet Σ and C a predicate over
2Σ* (the constraint). A behavior protocol b is a minimal slice of a satisfying C, if b is a
slice of a, C(L(b)) holds, and there is no behavior protocol c such that c is a slice of b,
C(L(c)) holds, and c ≠ b.

Fig. 4. A minimal reduction of the DHCPServer frame protocol

3 Slicing with Respect to Composition

This section presents a concrete protocol slicing technique—slicing with respect to
composition. This technique is the proposed solution addressing the goal articulated
in Sect. 1.2, i.e. to develop a method to reduce behavior protocols with respect to their
particular composition (reflecting a desired component architecture/assembly) in
order to omit the parts of the behavioral specification superfluous with respect to the
composition. The technique is based on the formal basis provided in Sect. 2, and the
general slicing strategy described in [20], which aims at extending the program slicing
paradigm to general slicing of an expression.

Again, the goal is to determine the unused behavior in a composition of given
components and eliminate it from the behavior specification. Assuming the behavior of
components is specified via their frame protocols FP1, FP2, … , FPn and the language of
the composition of the components is thus LC = L(FP1 ∇ FP2 ∇ … ∇ FPn), it is desirable

(
 !IDhcpCallback.IpAddressInvalidated*
 |
 (
 (
 ?IManagement.UsePermanentIpDb↑ ;
 (
 !IIpMacPermDb.GetIpAddress*
 |
 (
 !IManagement.UsePermanentIpDb↓ ;
 ?IManagement.StopUsingPermanentIpDb↑
)
) ;
 !IManagement.StopUsingPermanentIpDb↓
) ; (

 A repeated here
) ; (

 A repeated here
)
)
)

A

www.manaraa.com

 Slicing of Component Behavior Specification with Respect to Their Composition 197

to find minimal reductions FPmr
1, FPmr

2, … , FPmr
n of the protocols FP1, FP2, … , FPn

such that L(FPmr
1 ∇ FPmr

2 ∇ … ∇ FPmr
n) = LC. In other words, the composition of the

reduced protocols should specify precisely the same behavior as the composition of the
original protocols and thus only the unused parts are removed. In terms of Def. 3, the
predicate is chosen for each protocol FPi separately as Ci(L(FPmr

i)) ≡ (L(FP1 ∇ … ∇
FPmr

i ∇ … ∇ FPn) = LC), which merely formally states the requirement above.
Moreover, it would be an advantage to echo this reduction in these frame protocols by
their syntactical simplification—to slice them. However minimal reduction cannot be
reflected accurately by slicing in general (Sect. 2.2); fortunately, as a compromise,
minimal slicing of these frame protocols is achievable—see below. Thus instead of by a
minimal reduction FPmr

i, each FPi is to be replaced by a minimal slice FPms
i of it, again

asking similarly Ci(L(FPms
i)) ≡ (L(FP1 ∇ … ∇ FPms

i ∇ … ∇ FPn) = LC) to hold.
The general expression slicing strategy [20] prescribes slicing to be done in three

phases: parsing – creation of syntax tree of an expression, marking – marking syntax
tree nodes that are important with respect to the given slicing criterion, and
outputting – creating slice of the original expression based on the marks on the syntax
tree nodes.

Clearly, the actual logic of a specific slicing technique lies in the design of the
phases, namely the second one that determines how the slicing criterion is applied.
The first and third phases are highly specific to the nature of the expression being
sliced, but they do not influence the actual application of the slicing criterion.

The phases of the proposed slicing with respect to composition are as follows
(Fig. 5). First, parsing of the protocols is done using the JavaCC [11] generated
parser. The goal of the second phase is to mark the nodes of the syntax trees, which
represent the behavior (sub)protocol relevant in the given composition. Basically, this
is achieved by traversing the reachable states of the composition state space; all the
syntax tree nodes that were used to generate reachable states are marked. This assures
that the language of the resulting slice satisfies the constraint Ci articulated above. In
the third phase, the slice is acquired by pruning the syntax trees of individual
protocols based on the marks on their nodes (the unmarked nodes are removed as well
as the operators that are no longer relevant—like a “+” with one operand removed).

By removing all the unmarked nodes, the technique clearly creates as small slices
as possible, assuming that the protocols are not redundant, i.e. they do not specify
redundantly (as e.g. protocol a? + a? does). This assumption does not cause any
harm—real-life behavior protocols are usually not redundant, since redundancy does
not introduce any new information into the behavioral specification.

For illustration, slicing of the behavior protocols ?a{!x}* | ?b* and !a{?x + ?y}*
with respect to their composition via the consent operator ∇ is depicted in Fig. 5. In
the 1st phase, parse trees of these behavior protocols are constructed. Then, in the 2nd
phase, the behaviors specified by these protocols are composed via ∇. All the
reachable states of the composition state space are sought on-the-fly and all the nodes
of the parse trees that were used to generate the reachable states of the composition
are marked. Finally, in the 3rd phase, the parse trees are pruned to contain only the
marked nodes which make sense (note deletion of the | and + operators, when losing
the second operand). The resulting sliced protocols are: ?a{!x}* and !a{?x}*, which
are minimal slices (and even minimal reductions, in this special case).

www.manaraa.com

198 O. Šerý and F. Plášil

Fig. 5. Three phases of slicing with respect to composition

4 Tools and Case Study

The proposed technique was implemented as a stand alone application BPSlicer,
being an extension of the dChecker behavior protocol checker written in Java 1.5,
both available at [8].

BPSlicer was applied to the case study mentioned in Sect. 1 (Fig. 1), which was
modified (reused) to provide internet access in a public garden, where credit card
payment was considered as the only option. The frame protocol representing the
environment was manually modified accordingly. Then the frame protocols of the
components were sliced with respect to composition by BPSlicer. As expected, the
frame protocols of Token, Firewall, CardCenter, and AccountDatabase
remained unchanged, since they do not feature any airport specific functionality. On
the other hand, the frame protocols of FlyTicketDatabase and Frequent-
FlyerDatabase were reduced to a NULL protocol, which means that these
components were not used in the new environment and could be safely removed from
the architecture. The frame protocols of Arbitrator and DhcpServer were
reduced partially: The airport specific login calls were omitted from the frame
protocol of Arbitrator. As to DhcpServer, the unused part describing the
permanent MAC to IP address association was sliced off (actually this feature was not
used even in the original application; note the unbound IManagement and
IIpMacPermDb interfaces in Fig. 1).

Technically speaking, the slicing technique proposed in Sect. 3 is implemented as a
part of the consent operator evaluation in dChecker, which also uses parse trees and
creates on-the-fly the state space of the parallel composition (BPSlicer adds the

www.manaraa.com

 Slicing of Component Behavior Specification with Respect to Their Composition 199

marking). As an aside, the state space generated by the behavior composition of the
top-level components in Fig. 1 features around 4.5 million states and its error-free
communication was verified by the dChecker in 126 seconds (Core Duo T2400
2x1.83 GHz, 1 GB RAM, 600 MB for Sun JVM 1.5.0.08, Linux 2.6.17). For
comparison, the garden scenario, featured 421 980 states and took 23 seconds to
verify the communication and slice the protocols to the size indicated in Table 1
(without slicing, the verification took 18 seconds).

Table 1. Summary of the case study results. Sliced protocols are printed in bold script

#states
protocols

original reduced
Environment 13 13
Arbitrator 15 625 8 125
DhcpServer 33 3
Token 245 245
Firewall 81 81
AccountDatabase 729 729
CardCenter 3 3
FlyTicketDatabase 7 1
FrequentFlyerDatabase 7 1

The reduction of state space is a “pleasant” and inherent consequence of slicing,
which makes the state space smaller (in contrast to minimal reduction which in
general can make the state space even bigger). Obviously, to which extend the state
space size is lowered by a reduction very much depends on what kind of operators are
removed. For instance, elimination of an unused parallel behavior reduces the size by
removing one of the state space “dimensions”, i.e. by removing one element of the
Cartesian product of the behaviors composed in parallel. In contrast, removing an
alternative reduces the state space naturally by a linear factor only. In the case study,
slicing the frame protocol of the Arbitrator component removed two alternatives
(two airport specific logins) inside one of five basic parallel behaviors of
Arbitrator, reducing the number of states from 15 625 to 8 125.

5 Related Work

There are two main areas of related work. The first one includes research sharing our
motivation—applying slicing to formal specification and/or the software architecture
in order to facilitate its reuse and make its comprehension easier. In [10], Hassine et
al. apply generalized slicing to functional requirement specification stated in Use
Case Map notation. Their goal is to promote reuse of the requirement specification
and aid with software maintenance by developing techniques that would help identify
feature dependencies and interactions. Although the motivation is very similar to ours,
the levels of abstraction differ.

The works by Stafford and Wolf [21] and Zhao [22] target slicing of software
architecture description with similar goals. Stafford and Wolf provide the Aladdin

www.manaraa.com

200 O. Šerý and F. Plášil

tool for slicing of software architecture specified in Rapide [13]. In his work, Zhao
describes a technique for reduction of software architecture in Wright [2]. Both these
works aim at removing connectors and/or components from the software architecture
based on the behavioral description and a slicing criterion. In contrast, our approach
goes one-step further, because we can reduce unused behavior at a finer level of
granularity—method calls, not being limited to granularity of components and
connectors as in [21] and [22].

The second area pertains related work which is focused on component adaptation.
In [18], Reussner presents a concept of parameterized contract on component
interface. The contract specifies which of the provided interfaces of a component can
be safely used if specific required interfaces are bound. This approach, in addition to a
separate behavior specification on each interface, needs an explicit specification of the
contract between the provided and required interfaces (in a different formalism). On
the contrary, a frame protocol describes behavioral specification of a component as a
whole (the interplay of calls on the proved and required interfaces), so that all the
necessary information for adaptation of the specification is available in the protocol.
In a similar vein, the relativity of a component’s failure with respect to a particular
environment it is used in is further discussed in [1].

Bobeff and Noye [4] use the techniques of program slicing and partial evaluation
for component (code) specialization (adaptation). They envision delivery of generic
components (component generators) that would automatically generate components
adapted to the environment they are used in. When compared to our approach, [4]
works at the code level, requiring it to be known at the time of adaptation. Our
technique works solely on the level of behavioral specification and can be applied
even when the actual code is not available, which is typical for COTS components.
Similar to [4] is the Koala component framework [15], which statically optimizes the
architecture for specific parameters. Our solution is more flexible since it takes into
account also the behavior (not only static configuration of components).

Finally, Cheung and Kramer [5, 6] aim at mitigating the state explosion problem in
the scope of Compositional Reachability Analysis. They use information about
context in which a component (process) is employed in the form of interface
processes, either automatically generated or user provided, to reduce the size of the
state space to analyze. In contrast, our slicing technique captures the actual behavior
used in a concrete component environment (context) by modifying the original
behavior specification accordingly.

6 Conclusion

In order to help a software designer with reusing software components and even
whole component architectures, a technique for slicing behavior protocols, slicing
with respect to composition, was presented. Given a composition of components, the
technique can remove the unused behavior from the behavior specification, clarifying
thus the actual roles of individual components.

Viability of the proposed technique was demonstrated by the prototype
implementation and its use in a non-trivial case study in Sect. 4. Moreover, the formal
foundation in Sect. 2 was designed to allow for an easy extensibility, so that it can be

www.manaraa.com

 Slicing of Component Behavior Specification with Respect to Their Composition 201

used as a basis for other slicing techniques than the one described. For example,
slicing with respect to property, omitting the parts of the behavior specification
irrelevant to a certain user-specified property, could be considered. We also envision
the contribution of our work to the problem of modeling component environment for
the purpose of code checking of isolated primitive components [16], as the presented
technique of slicing with respect to composition can be used to restrict the model of a
component’s environment, reducing size of the state space to be explored and making
code checking more feasible in this way.

Acknowledgements

The authors would like to thank to Pavel Ježek and Jan Kofroň for sharing the CRE
demo application architecture diagram, being a basis for Fig. 1 and to Pavel Parízek
for valuable comments and suggestions.

References

1. Adamek, J., Plasil, F.: Component Composition Errors and Update Atomicity: Static
Analysis. Journal of Software Maintenance and Evolution: Research and Practice 17(5),
363–377 (2005)

2. Allen, R., Garlan, D.: A Formal Basis for Architectural Connection. ACM Transactions on
Software Engineering and Methodology 6(3), 213–249 (1997)

3. Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier,
Amsterdam (2001)

4. Bobeff, G., Noye, J.: Molding Components using Program Specialization Techniques.
Eighth International Workshop on Component-Oriented Programming (2003)

5. Chueng, S.C., Kramer, J.: Compositional Reachability Analysis of Finite-State Distributed
Systems with User-Specified Constraints. In: Proceedings of the 3rd ACM SIGSOFT
Symposium on Foundations of Software Engineering, pp. 140–150. ACM Press, New
York (1995)

6. Cheung, S.C., Kramer, J.: Enhancing Compositional Reachability Analysis with Context
Constraints. In: Proceedings of ACM SIGSOFT’93 Symposium on Foundations of
Software Engineering, pp. 115–125. ACM Press, New York (1993)

7. The CRE project (Component Reliability Extensions for Fractal Component Model),
http://kraken.cs.cas.cz/ft/public/public_index.phtml

8. dChecker & BPSlicer, http://dsrg.mff.cuni.cz/projects/dchecker
9. Gramlich, G., Schnitger, G.: Minimizing NFA’s and Regular Expressions. In: Diekert, V.,

Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411. Springer, Heidelberg
(2005)

10. Hassine, J., Dssouli, R., Rilling, J.: Applying Reduction Techniques to Software
Functional Requirement Specifications. In: Amyot, D., Williams, A.W. (eds.) SAM 2004.
LNCS, vol. 3319, pp. 138–153. Springer, Heidelberg (2005)

11. JavaCC (Java Compiler Compiler), https://javacc.dev.java.net
12. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on

Computing 22(1), 1117–1141 (1993)

www.manaraa.com

202 O. Šerý and F. Plášil

13. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.:
Specification and Analysis of System Architecture Using Rapide. IEEE Transactions on
Software Engineering 21(4), 336–355 (1995)

14. Meyer, A.R., Stockmeyer, L.J.: The Equivalence Problem for Regular Expressions with
Squaring Requires Exponential Space. In: Proceedings of the 13th Annual Symposium on
Switching and Automata Theory, FOCS, pp. 125–129 (1972)

15. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Component
Model for Consumer Electronics Software. IEEE Computer 33(3), 78–85 (2000)

16. Parizek, P., Plasil, F.: Modeling Environment for Component Model Checking from
Hierarchical Architecture. In: FACS’06. Proceedings of Formal Aspects of Component
Software, Prague, Czech Republic. ENTCS (2006)

17. Plasil, F., Visnovsky, S.: Behavior Protocols for Software Components. IEEE Transactions
on Software Engineering 28(11), 1056–1076 (2002)

18. Reussner, R.H.: Automatic component protocol adaptation with the CoConut/J tool suite,
Tools for program development and analysis, vol. 19(5), pp. 627–639. Elsevier Science
Publishers, Amsterdam (2003)

19. Sery, O.: Model Checking and Reduction of Behavior Protocols, Master thesis at Charles
University in Prague (2006) available at: http://dsrg.mff.cuni.cz

20. Sloane, A.M., Holdsworth, J.: Beyond Traditional Program Slicing. In: ISSTA ’96.
Proceedings of the 1996 ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 180–186. ACM Press, New York (1996)

21. Stafford, J.A., Richardson, D.J., Wolf, A.L.: Architecture-level Dependence Analysis for
Software Systems. International Journal of Software Engineering and Knowledge
Engineering 11(4), 431–451 (2001)

22. Zhao, J.: A Slicing-Based Approach to Extracting Reusable Software Architectures. In:
Proceedings of the Conference on Software Maintenance and Reengineering, pp. 215–223.
IEEE Computer Society Press, Los Alamitos (2000)

www.manaraa.com

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 203–210, 2007.
© Springer-Verlag Berlin Heidelberg 2007

An Execution-Level Component Composition Model
Based on Component Testing Information

Gerardo Padilla, Carlos Montes de Oca, and Cuauhtemoc Lemus

Research Center in Mathematics - CIMAT,
Callejón Jalisco S/N. Mineral de Valenciana

36020, Guanajuato, Mexico
{gpadilla, moca, clemola}@cimat.mx

http://www.cimat.mx/ingsoft/index.html

Abstract. Software components and software architectures have emerged as a
promising paradigm to improve the construction of software systems. Some at-
tributes, such as reliability, requires evidences about failures in the system. An
approach addressing the software reliability estimation problem is based on
considering all execution traces collected during the testing process. An execu-
tion trace is a sequence of blocks grouping source code statements. Following
this approach, early reliability assessment of component assemblies requires
addressing an important issue: a precise composition semantics representing the
behavior of the assembled components. This paper describes a composition
model for sequential component assemblies which uses as basic units of com-
position a set of empirical evidences generated during the component testing
process. These units are named as Component Test Records.

1 Introduction

Software is becoming a critical element nowadays. The range of applications that
require software is increased every day since software provides a flexible and easy
way to encapsulate complex behaviors [1]. Examples of such complex applications
include appliances, automobiles, aircrafts, and medical equipment.

Software Components and Software Architectures have emerged as a powerful
paradigm to build complex and larger systems. Several kinds of attribute analyses are
performed by using software architectures including performance analysis [2] and
reliability analysis [3].

Similarly to other non-software domains, the early assessment of system attributes,
such as performance or reliability, provides information to improve the software de-
velopment process [4]. The term “early” means that the assessment is performed be-
fore the actual construction of the system and it is based on evidences of candidate
components which will be used in the system. This kind of assessment allows the
evaluation of design alternatives and component selection before the actual construc-
tion of the system with benefits in the project schedule and project costs.

www.manaraa.com

204 G. Padilla, C. Montes de Oca, and C. Lemus

Our interest addresses the early reliability assessment of component-based soft-
ware. Architectural reliability models consider the structure and the internal parts of
the system (i.e., components). Depending on the model approach, the information
collected from each component is incorporated into the system reliability estimation
in different ways [5], [6], [7], [8]. Our approach follows a different strategy since our
model is based on performing a low-level composition of reliability-related informa-
tion before the reliability assessment.

The reliability-related information is composed of test cases, test results, and exe-
cution related information (i.e., execution traces). Execution traces are sequences of
blocks of statements defined by a regular control-flow static analysis [9] and instru-
mented before the component testing process [10] (i.e., this instrumentation process
enables the monitoring of such execution traces). The reliability-related information is
consolidated into an artifact named as Component Test Record.

This paper describes the composition model for sequential assemblies of components
based on their component test records. This paper considers as component any reusable
part of software that can be characterized by inputs and outputs (i.e., functions, proce-
dures, object methods, or libraries can be seen as components). Even the importance of
component models, this paper does not include them. The composition model presented
in this paper might be used to formalize some part of a component model.

The paper is organized as follows. Section 2 provides related works in the areas of
composition models. Next, Section 3 describes how the reliability-related information
is organized by using the Component Test Record artifact. Section 4 describes the
formal composition model for component test records assembled sequentially. Fi-
nally, Section 5 provides conclusions, future work and final remarks on this paper.

2 Related Works

The problem of defining composition models and their semantics has been addressed
by using different formalisms which depend on the purpose of such semantics and the
available information. For example, the process algebra formalism has been used for
systems where concurrency is a concern [11]. Petri-Nets have been used as founda-
tions for parallel execution allowing the verification of properties such as liveness and
safety [12].

Our approach is based on considering execution-level information. This informa-
tion is modeled by using abstract interpretation of source code [13]. This interpreta-
tion defines a high level model of the source code structure and it models the
execution using such abstractions. This approach is also named as symbolic execu-
tion [14]. The composition model presented in this paper is based on execution
traces and the natural dependency found between any execution trace and its
corresponding input and output value.

3 Component Test Records

A Component Test Record is an artifact for consolidating the testing and the execu-
tion-related information. A component test record is composed of test data (i.e., a set

www.manaraa.com

 An Execution-Level Component Composition Model 205

of test cases), test meta-data (i.e., descriptions about the information stored in the
component test record), and test results (i.e., verdict about the test case and execution
information).

An example of a component test record is shown in Table 1. This example focuses
on a component that computes the square root of integer values. Two sections are
show in this table. The first section corresponds to the meta-data information about
the component including the domain description and the functionality description.
The second section includes all test data, test results, and their corresponding execu-
tion trace information.

Table 1. Square Root Computation Component Test Record

Component Functionality Functionality Signature Domain Description

Square root computation function
for integer values

Sqroot(input): output
input∈ [0..65535]

output ∈ (0, 300)

Testing Data

Test Case
Number

Input
Value

Expected
Output Value

Execution Trace Test Result

1 1 1 ABCD PASS

2 43 6.557438 ABBBBBBBCD PASS

3 49 7 ABBBBBBBCD PASS

4 55 7.416198 ABBBBBBBCD PASS

5 56 7.483315 ABBBBBBBCD PASS

6 58 7.615773 ABBBBBBBCD PASS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4 A Composition Model for Component Test Records

Intuitively, the composition mechanism for two component test records is shown in
Fig. 1. This figure shows the representation of two component test records (A and B)
where the notation iAj denotes the input value of the j-th test case contained in the
component test record A. Similarly, the notation oAj denotes the output value of the

 j-th test case and εAj denotes the corresponding execution trace. The symbol [⇒]

denotes the test record composition operator. The resulted composed component is
generated by finding “compatible” or similar values between the output value of one
test case in the first component test record and the input value in the second test re-

cord. This matching condition is denoted with the expression oAj ≈ iBs, meaning that

there is an input value iBs that is compatible or equivalent with the output value oAj.

www.manaraa.com

206 G. Padilla, C. Montes de Oca, and C. Lemus

[⇒]

Fig. 1. Composition Mechanism for Two Component Test Records

The basic building blocks defined for this model are:

• Execution Nodes: A finite set E of labeled execution nodes.
• Basic Data Domains: A set BD of basic data domains. These domains represents

basic data types such as
BD = {Integer, Real, Character, SEQ(Character)}1.

The next definitions provide the characterization of the data contained within com-
ponent test records.

Definition 1. A Constrained Basic Data Domain, RD, is a subset of a basic data type
defined in the set of basic data domains. This subset is defined as

RD = {x | istypeof(x) ∈ BD ∧ pred(x)=TRUE)}

where x represents any element in the subset satisfying two conditions. The first con-
dition states that the data type associated to such element is contained within the set of
basic data domains (i.e., using the istypeof predicate). The second condition focuses
on the specific constraints associated for such subset. These constraints are defined
using the pred predicate.

Definition 2. A Complex Data Domain, CD, is a tuple of constrained basic data
domains such as

CD = <rd1, rd2, rd3,…rdn >

where rd1, rd2, … rdn denotes constrained basic data domains. The complex data do-
main can be seen as the description of an abstract data type without the specification
of operations.

Definition 3. An Input Domain, I, is a tuple of complex data domain such as

I = <cd1, cd2, cd3,…cdr >

where cd1, cd2, … cdr denotes complex data domains. Similarly, an Output Domain,
O, is a tuple of complex data domain such as

1 The expression, SEQ(Character), denotes all possible sequences of characters.

www.manaraa.com

 An Execution-Level Component Composition Model 207

O = <cd1, cd2, cd3,…cds >

where cd1, cd2, … cds denotes complex data domains.

Definition 4. An Input Domain Instance, I, is a tuple such as

I = <i1, i2, i3, … ir>

where i1∈v cd1, i2∈v cd2, i3∈v cd3, … ir∈v cdr. This tuple represents a set of actual
values (or instances) defined for every constrained basic data domain in every com-
plex domain that it is denoted by the symbol ∈v. The definition for the Output Do-

main Instance, O, follows a similar definition. An Output Domain Instance, O, is a

tuple such as

O = <o1, o2, o3,… os>

where o1∈ v cd1, o2∈ v cd2, o3∈ v cd3, … or∈ v cds.

Definition 5. A Test Record, TP, is a tuple such as

TP = <P, I, O, E>

where I denotes the input domain and O the output domain. E denotes a set of labeled

execution nodes and P denotes a set of tuples such as

P = <I, O, E >

where I is an input domain instance, O is an output domain instance, and E represents

a sequence of labeled execution nodes where E ∈ SEQ(E).

Next, additional definitions are provided to characterize the matching of information
between instances of input and output domains.

Definition 6. Domain Matching Condition. Given an input domain I and an output

domain O. It is said that these domains satisfy a domain matching condition, de-

noted by I O, when for every complex data domain, cdi in I , there is an equivalent

complex data domain cdj in O. Two complex data domains are equivalent when is-

typeof(cdi) = istypeof(cdj).

Definition 7. Instance Equivalence Condition. Given an input domain instance I
and an output domain instance O where their corresponding input and output domain
satisfy the domain matching condition. Then, it is said that these instances satisfy an
instance equivalence condition, denoted by I ≈ O, when for every instance ik, and its
corresponding match oj, satisfy the predicate covered(ik, oj) = TRUE.

The predicate covered (ik, oj) is defined as a function that returns true if ik is mapped
to oj otherwise returns false. The predicate covered plays an important part for the
composition since it determines which values can be used for the composition. The

www.manaraa.com

208 G. Padilla, C. Montes de Oca, and C. Lemus

covered predicate is defined on a case basis depending on the characteristics of the
specific information.

Definition 8. Execution Trace Composition Operator. Given two execution node

sequences, e1 and e2, the composition of sequences, denoted by e1⊕e2, is defined as

the concatenation of both execution sequences.

We use the notation Ti(I) and Ti(O) to denote the corresponding input and output

domain of the Ti test record. The next rule defines the test record composition follow-
ing an algorithmically approach.

Execution Composition Rule. Given two test records,

Tj = <Pj, Ij, Oj, Ej>, Tk = <Pk, Ik, Ok, Ek>,

where the output domain of the jth-record and the input domain of the kth-record
satisfy the domain matching condition Tj(O) Tk(I). Then, the executable composi-

tion of two test records, denoted by Tj [⇒] Tk, is defined as follows:

• A new test record, Tjk, is defined. The elements of this test record are instan-
tiated as follows:

Tjk = <Pjk, Ij, Ok, Ejk> where

Ejk = Ej ∪ Ek, representing the union of both labeled execution node sets.
Pjk, representing the composed tuples Pjk = <Ic, Oc, Ec > from both test re-

cords. This set of tuples is generated following the next algorithm
o For every p∈Pj, find a tuple q∈Pk satisfying the instance equiva-

lence condition, such that p.O ≈ q.I
o Add a new tuple <ic, oc, ec > in Pjk such that

ic = p.i, oc = q.o , ec = p.e ⊕ q.e where p.i denotes the in-
put domain instance in p, q.o denotes the output domain
instance in q, and p.e. and q.e denote the corresponding
execution trace.

4.1 Example

We use two component test records to illustrate the concepts defined previously. This
example composes two components; one computes the square root of integer values
and the second computes the logarithms of real values, denoted as Csqr and Clog re-
spectively. The composition Csqr [⇒] Clog is described.

The component test record for defined for the Csqr component is defined as follows

TPsqr = <Psqr, Isqr, Osqr, Esqr>, where

Esqr = {A, B, C, D}, Isqr = < < isqr ∈ Integer >>,

Osqr = < < osqr ∈ Real ∧ [osqr > 0 and osqr < 300] >>, and

Psqr = {<1,1,ABBBCD>, <16, 4, ABBBBCD>, ….}

www.manaraa.com

 An Execution-Level Component Composition Model 209

Similarly, the component test record defined for the Clog component is defined as
follows

TPlog = <Plog, Ilog, Olog, Elog>, where
Elog = {H, I, J, K},
Ilog = < < ilog ∈ Real >>, Olog = < < olog ∈ Real >>, and

Plog = {<1,0, HIJK>, <3.5, 0.544, HIJJJK>, ….}

The composition requires meeting the domain matching condition, Ilog Osqr.
This condition is satisfied since istypeof(Real) = istypeof(Real). Next, we need to state
the instance equivalence condition by defining the predicate covered. In this case, the
predicate covered is defined as follows

⎩
⎨
⎧ <−

=
Otherwise

ji
jicovered

FALSE

TRUE
),(

ξ

This predicates is simple since it only compares the numeric distance between two
elements (i.e., the value selected is the one that is less than a threshold value denoted
as ξ). Finally, using this information, the composed test record is described as

TPsqr-log = <Psqr-log, Isqr-log, Osqr-log, Esqr-log>, where

Esqr-log = {A, B, C, D, H, I, J, K}, Isqr-log = < < isqr-log ∈ Integer >>

Osqr-log = < < osqr-log ∈ Real >>, and Psqr-log = {<1,0, ABBBCDHIJK>, ….}

5 Final Remarks and Future Work

This paper has presented a composition model for sequential assemblies of compo-
nent test records. The core part of the composition is based on selecting matching
points meeting an equivalence condition and then, generating a new component test
record. The complexity presented in the formal composition model is derived from
the incorporation of other composition patterns such as procedure call that is part of
our future research.

This composition model assumes the existence of a comprehensive number of test
cases. Our research has incorporated predictive models to address the practical issue
of having only a limited number of test cases. Experiments have shown promising
results after using this composition model in small applications. The reliability as-
sessments are based on an ad-hoc reliability model that is sensible to changes in the
internal behavior of the component [15].

References

1. Humphrey, W.S.: Winning with Software: An Executive Strategy. Addison-Wesley, Read-
ing (2002)

2. Sharma, V.S., Trivedi, K.: Architecture Based Analysis of Performance, Reliability and
Security of Software Systems. In: WOSP ’05. 5th international Workshop on Software and
Performance, Palma, Illes Balears, Spain (2005)

www.manaraa.com

210 G. Padilla, C. Montes de Oca, and C. Lemus

3. Rodrigues, G., Rosenblum, D., Uchitel, S.: Using Scenarios to Predict the Reliability of
Concurrent Component-Based Software Systems. In: Cerioli, M. (ed.) FASE 2005. LNCS,
vol. 3442, Springer, Heidelberg (2005)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,
Reading (2003)

5. Smidts, C., Sova, D., Mandela, G.K.: An Architectural Model For Software Reliability
Quantification. In: 8th International Symposium On Software Reliability Engineering
(1997)

6. Goseva-Popstojanova, K., Hamill, M., Perugupalli, R.: Large Empirical Case Study of Ar-
chitecture-based Software Reliability. In: ISSRE ’05. 16th International Symposium on
Software Reliability Engineering, Chicago, IL (2005)

7. Yacoub, S.M., Cukic, B., Ammar, H.H.: IEEE Transactions on Reliability 53, 465 (2004)
8. Roshandel, R., Medvidovic, N.: Toward Architecture-Based Reliability Estimation. In:

WADS 2004. Twin Workshops on Architecting Dependable Systems, Edinburgh, UK
(2004)

9. Allen, F.E.: Control Flow Analysis. In: Proceedings of a Symposium on Compiler optimi-
zation, Urbana-Champaign, Illinois (1970)

10. Tikir, M.M., Hollingsworth, J.K.: Efficient Instrumentation For Code Coverage Testing.
In: Proceedings of the 2002 ACM SIGSOFT international symposium on Software testing
and analysis, Roma, Italy (2002)

11. Wallnau, K., Ivers, J., Nishant, S.: A Basis for Composition Language CL. Software Egi-
neering Institute, Pittsburgh, PA (2002)

12. Anisimov, N.A., Golenkov, E.A., Kharitonov, D.I.: Compositional Petri Net Approach to
the Development of Concurrent and Distributed Systems. Program. Comput. Softw. 27,
309 (2001)

13. Debray, S.: Abstract Interpretation And Low-Level Code Optimization. In: Proceedings of
the 1995 ACM SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation, La Jolla, California (1995)

14. Coward, P.D.: Software Testing for Critical Systems. IEE Colloquium on Software Test-
ing, 2/1 (1990)

15. Padilla, G.: A Test Profile Analysis Framework for Assessing the Reliability of Software
Component Assemblies (2007)

www.manaraa.com

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 211–226, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Capturing Web Services Provider Constraints – An
Algorithmic Approach

Sudeep Mallick and S.V. Subrahmanya

E-commerce Research Lab, Infosys Technologies Ltd.,
Bangalore (NASDAQ: INFY), India 560100

{sudeepm, subrahmanyasv}@infosys.com

Abstract. In the SOA paradigm service composition enables creation of
business processes and workflows by assembling together simple or composite
services in a particular sequence. In such a distributed architecture possibly
involving multiple service providers, optimal selection of service
implementations from an existing pool of services, based on QoS and cost
factors assumes critical practical relevance. In this paper, we analyze various
complex service provider configurations, where multiple business
functionalities (comprising a business process) are available as simple or
composite services from multiple service providers (some possibly working in
coalitions) at varying QoS and cost attribute values. We study the service
composition constraints resulting in such a context and propose an algorithm to
formally capture these special constraints and represent these into simple
weighted multi-stage graphs suitable for subsequent application of various
optimization techniques cited in the literature.

Keywords: Oriented Computing, Web services, Quality of Service,
Optimization, Graph Theory.

1 Introduction

In the Service Oriented Architecture (SOA) paradigm a service has been defined as a
loosely coupled unit of application logic that provides either some business
functionality or information to other applications and service consumers through well
defined and standardized interfaces [1]. Modularity and independence enabled by
SOA brings about tremendous flexibility, reusability and interoperability of legacy
and freshy developed application logic. Garnter predicts SOA will be used in more
than 50% of new, mission critical applications designed in 2007 and more than 80%
by 2010 with 0.7 probability [3]. While internal service implementations are rapidly
proliferating the modern day enterprise, publicly available commercial services are
also emerging at a fast pace from portals such as www.amazon.com,
www.google.com, ww.strikeiron.com, etc. [2][4][5]. Software as a Service (SaaS)
products vendors such as salesforce.com, SAP, etc. are basing their new versions on
service orientation model.

The distributed nature of the SOA and likely existence of multiple service
providers pose challenges with respect to service cost and quality optimization

www.manaraa.com

212 S. Mallick and S.V. Subrahmanya

peculiar to this emerging architecture paradigm [6]. Multiple service implementation
options – simple or composite - could be available from one or more service providers
at varying cost and quality factors. This could lead to quite complex service provider
and service implementation configurations and dependencies. Optimal selection of
service implementations (concrete services) becomes a challenge in such a scenario in
order to accomplish a complete business process at minimum cost and best possible
quality of service. In this paper we consider various service provider configurations
that could occur in real life scenario and develop an algorithm to formally capture the
new constraints resulting out of these special configurations. The output of this
algorithm is a formal and structured representation of the services and their
dependencies. The structured output could then be used to perform optimal service
selection from among the service implementation options available to complete the
particular business process under consideration.

In section 2 we briefly discuss the SOA paradigm to enable the reader appreciate
the problem under consideration. In section 3 we discuss the formal models used to
describe the web services composition problem. In section 4 we identify the special
scenarios of practical business concern describing different service provider
configurations. In section 5 we propose an algorithm, for formalizing these special
business scenarios or constraints. In section 6, we discuss the algorithm
implementation developed in Java™ and the architecture of a tool embodying the
algorithm implementation. We also discuss the algorithm implementation test results.

2 SOA, Services and Web Services

Services could be categorized as “simple” services made up of a single, unified piece
of standalone business logic that could be used independent of others and
“composite” ones which embody more complex logic and multiple business steps and
are made by composing two or more simple services or other composite services.
Services chained together into appropriate sequence could enable business processes
or workflows where each service node would represent one business activity step.
SOA implementation platforms such as Web services have standards which enable
both static composition of services and dynamic composition of services. The
exposure of the description of service interface in terms of machine readable
standards based description language such as WSDL enables run-time search,
selection, binding and composition of services from a pool of available services [6].

A service is described not only by its interface (which describes the business
functionality it caters to and also the data input and output structure and semantics) but
also by its cost (or price) and Quality of Service (QoS) attributes such as reliability,
availability, etc. [7]. When multiple service implementations are available catering to the
same business functionality (which could likely happen both in the intra-organization
scenario or B2B and B2C scenarios), services are chosen based on these attribute values.

Optimal service selection and composition has been the area of active research,
where semantics based techniques have been combined with quantitative optimization
techniques to enable optimal service selection and composition. In [6][8][9][10] QoS
models for Web services have been developed and various optimization techniques
applied for QoS and cost based selection and composition of services from multiple
service providers to enable business processes and workflows.

www.manaraa.com

 Capturing Web Services Provider Constraints – An Algorithmic Approach 213

3 Formal Definition of (Web) Services

Formal description of a Web service and service composition for the purpose of
optimal service selection from a pool of available services would need to satisfy the
following requirements (Fig. 1):

• it should capture the service metadata which would distinguish between services
catering to different business functionalities.

• it should capture the service metadata which would distinguish between services
catering to the same business functionality but having other distinguishable
attributes such as QoS, cost, provider identification and any other attribute relevant
for decision making.

• it should capture the sequential dependencies among web services in a composition
meant to represent workflows and business processes

Fig. 1. Services S11 and S21 from provider 1 are sequenced together where O11, the output
interface of S11, is compatible or matching with I21, the input interface of S21. Similarly the
services S12 and S21 from providers 2 and 1 respectively are compatible. The cost C11, C12,
C21 and quality Q11, Q12, Q21 attributes of the respective service implementations are
represented accordingly.

An abstract definition of the service (referring to the functionality, interface,
dependencies) would actually be implemented by one or more service providers.
Hence, a concrete service implementation is an actual instantiation of an abstract
service having different QoS, cost attributes and there could be multiple concrete
implementations of the same service.

We use the model and representation technique used in [9] to represent a service
enabled business process as a weighted multi-stage graph where the weights could
represent cost and/or quality depending upon the optimization objective. We also
continue to use the concepts of Web services clusters and communities as explained
in [9].

Web services cluster represent groups of concrete web services catering to the same
functionality. Web services community CM represent group of concrete web services
(implementations) catering to the same functionality as well as having the same
interfaces (input as well as output). Hence, a Web services cluster could be made up of
one ore more Web services communities. Two communities are said to have matching
interface if the implementations they contain could be sequenced together in a chain to
form a composite service. So service s and s’ would be said to have matching interfaces if
the input interface of s’ is a subset of the output interface of s. Services from the

www.manaraa.com

214 S. Mallick and S.V. Subrahmanya

communities having matching interfaces could be chained together to form a complete
business process or workflow. The weights on the links between services could represent
cost and / or QoS attribute values of the respective services.

Web service s is a tuple s(p, f, i, o, c, q, m)
where p = provider; f = functionality; i = input interface; o = output interface; c =

cost; q = aggregated quality metric; m = composite number.
Web services cluster CL is a set of concrete services that provide functionality F,

i.e.

CL(F) = {s | s.f = F} (1)

Web services community CM is a set of concrete services in a cluster that have the
same interfaces I, O, i.e.

CL(F, I, O) = {s | s E CL(F) Λ s.i = I Λ s.o = O} (2)

4 Special Service Provider Configurations

Simple scenarios of concrete services powered business process chains where there
are multiple service providers have already been studied in [9]. In this section we
discuss more complex service provider configurations and contexts that could occur
in real life scenarios and the formalization of the constraints resulting out of such
configurations.

Scenario 1
It is possible that the same service is available from the same service provider at
different price or QoS attribute value due to reasons such as contractual agreement
between the provider and the requestor for a certain number of invocations (bulk
procurement) as in the case of commercial services or bulk operations in an intra-
organization scenario. This would lead to cost-QoS slabs (or buckets). For example, a
scenario is depicted in Table 1.

Table 1. Scenario 1

Scenario 2
It is possible that the same service could be available at a different cost and / or
QoS attribute value from the same service provider when bundled (composed) with
other interface matching services from the same provider. In other words, the

www.manaraa.com

 Capturing Web Services Provider Constraints – An Algorithmic Approach 215

composite service could have a different cost, QoS attribute value than a simple
aggregation [references for QoS aggregation techniques] of the values for each
participating service in the composite. For example, the following could be a
scenario.

As we can seen from Table 2 the cost of the composite service is not $2 and the
response time is not 90 + 80 = 170 ms. This is a likely scenario as the response time
of co-located service implementations could improve due to lower latency (and
possibly even the reliability) and the cost could reduce due to lower operational cost
of co-located services (possibly operating on the same physical server). Hence, it
appears from this analysis, it is possible that better terms could be available for
bundles of services (or composites) than for the individual services participating in
the composite.

Table 2. Scenario 2

Scenario 3
In this scenario two or more service providers could enter into contractual agreements
for preferential deals when operating as a group. The composite services made up of
participating service implementations from providers within the group would result
into better cost, QoS attribute values than the case, where each of the participating
individual service (that made the composite) is made available individually for use as
simple service or for composition with other services (available from service
providers outside their own group). This scenario can occur for commercial web
services where different service providers enter into commercial agreements. The
same situation can manifest itself for the case of internal services where services
hosted by particular geographical unit or region of the enterprise could have better
terms of operation with other services hosted by the same unit or region. In the case of
B2B or extended enterprises there could be different terms of operation mutually
agreed upon with different business partners, for different mutually useful services.
Hence, it may be a requirement to operate the same service at different cost and QoS
levels depending upon the nature of the business partner. The scenario has been
depicted in Table 3.

www.manaraa.com

216 S. Mallick and S.V. Subrahmanya

Table 3. Scenario 3

In Table 3, it is obvious that the composite services created out of services taken
from providers 1 and 2 together, is better in terms than the case when they are
procured separately – services 1,2,3,4 and 5 taken together turns out to be a better
deal than individual services procured separately or even the smaller composite
services (1-2, 3-4 along with service 5).

In all the above scenarios it is clear that composite services created from bundles of
services from one or more service provider might have different cost and / or QoS
attribute values compared to those of the individual participating services due to both
business and technical reasons.

5 Specification of the Service Provider Constraints – Algorithmic
Approach

In order to optimally select simple and composite services under the above practical
architectural scenarios, the following steps are required:

• capture the service provider configurations, coalitions and service composites in a
structured manner based on the formal definition of services as explained in
Section 3.

• use this formal representation (possibly a graph or matrix) as input to a process of
optimal services selection as in [8][9].

The proposed algorithm takes as input basic service details provided by service
providers giving details such as in Tables 1, 2 and 3.

Stage 1
From tables such as 1, 2 and 3 provided by the service providers create an equivalent
formal representation of the service following these rules:

1. Define the service as a tuple s(p, f, i, o, c, q, m) and create a service description
table (SD) representing data related to provider, functionality, input interface,
output interface, cost, quality, composite identification.

www.manaraa.com

 Capturing Web Services Provider Constraints – An Algorithmic Approach 217

2. For simple services from the same provider: provided at variable cost-quality
combinations create as many service rows in SD for each combination with m =
null setting appropriate values for p, f, i, o, c, q.

3. For composite services from the same or different provider: provided at variable
cost-quality combinations create one row in SD for each participating service for
each different composite. Give each service participating in a composite the same
composite number m = M to uniquely distinguish the row (from the other rows
representing the same service but existing as part of other composites). Set
appropriate values for p, f, i, o, c, q for each service thus formed.

Stage 2
Once we have the exhaustive listing for services, we proceed with the creation of
clusters, communities.

1. Create a service cluster table CLT(CL, f, g) representing each cluster, functionality,
stage number in the entire business process.

2. Horizontally partition SD into service clusters where the value of column f remains
the same in each partition. Denote each cluster table as CLi for stage i of the
business process embodying functionality fi, where i = 1 to k (there are k stages in
the business process).

3. Make entries into the CLT.
4. For each CLi in CLT

a. horizontally partition the corresponding table into further tables such
that they have same values for i and o columns where m = null. Each
resulting table is a community denoted by CMij where j = 1 to a
(assuming there are a communities for ith cluster with m = null).

i. Add the CLi to CMij mapping in a mapping table CL-CM (CL,
CM).

b. For the remaining rows in CLi having m != null (m not equal to null)
i. horizontally partition each row into a separate table each. Each

resulting table becomes a community by itself denoted by CMij
where j = a+1 to b (assuming a total number of communities
a+b in the cluster).

ii. Add the CLi to CMij mapping to CL-CM.
iii. Add each such table to a community chain data structure CC

(m, CM, r) containing the community number CM, and m and r
values. If there exists no row with the same value of m, mark
this row by setting r = 1. If there exists another row with the
same value of m, mark this by setting r =(largest value of r for
rows having the same value of m) +1.

Stage 3
Once we have the exhaustive listing of clusters and communities, we proceed with the
creation of interface matching between communities.

1. For each CLi in CLT
a. Find the successive CLi+1
b. For each CMij of CLi (from CL-CM table)

www.manaraa.com

218 S. Mallick and S.V. Subrahmanya

a. If CMij does not belong to CC or CMij belongs to CC but is the last
position community for a particular value of m then
i. For each CMij’of CLi+1 (from CL-CM table)

1. If CMij’ does not belong to CC or CMij’ belongs
to CC but is the first position community for a
particular value of m then

a. establish the existence of interface
matching between these.

b. If matching exists
i. store the community matching

in the matching table MT.
2. Consider CC. For each value of m

a. For value of i=2 to largest value of r for this value of m
i. establish the match between community CMij in CC having rank

i-1 and community CMij’ having rank i and add the match to MT

Having established all the service, clusters, communities and interface matching
between communities, taking into account all constraints arising out of composite
services, we are ready to apply an algorithm such as the one given in [9] to
generate the weighted graphical representation taking the tables CLT, CL-CM, CM
and MT as input. The generated graph could be subsequently used for optimal
service selection.

The usefulness of this algorithm lies in the following aspects:

• it is generic enough to support both simple and composite service spanning one of
more stages and one or more service providers.

• composite services are treated as a complete unit during interface matching – the
intermediate participating services are not matched with services outside the
composite. This is very important as the cost and quality attribute values quoted for
the service are possible only during participation in the composite.

• interface matching between pairs of services – simple or composite- is
transparently taken care of.

• although the algorithm works on breaking down a composite service into logically
simple service unit representing each stage of the business process for computation
purpose, the service provider need only specify the input and output interfaces of
the entire composite service.

6 Implementation of the Algorithm and the Tool

The algorithm implementation in the form of a tool was developed in Java™, an object
oriented language. The data structure used was primarily objects (not table as referred to
in the Algorithm section) for convenience. The tool has the following parts –
preprocessing covering Stage 1 of the algorithm and core processing covering Stages 2
and 3 of the algorithm, besides the input screen and result formatter (Fig. 2).

www.manaraa.com

 Capturing Web Services Provider Constraints – An Algorithmic Approach 219

Fig. 2. Architecture of the tool implementing the proposed algorithm

The optimization of the service selection falls outside the purview of this work and
hence shown outside the scope of the implemented tool.

Preprocessing (Stage 1)

The service provider provides the following input to the tool:

• service interface doc location or document (typically a WSDL file)
• business functionality stage in a publicized business process for which the service

is provided (in case of a composite service spanning multiple stages the
intermediate service interfaces are not relevant and need not be provided, unless
the composite is made of other services which have already been exposed)

• in case of composite service the covered stage numbers, provider details for the
particular stage (self or others) and the service numbers of the other participating
services and composite identification number (if already generated in an earlier
case and is known)

• QoS information for the service
• Cost information for the service

The tool accepts the above basic inputs from the service providers (through a GUI
input screen). It then generates the following for each service entry:

• service identification number – and dummy service identification numbers for
non-exposed notional services in a composite service (or better called larger
grained service catering to multiple business process stages)

• provider identification number
• interface doc identification number linking it to the WSDL location
• input interface and output interface identification numbers and their descriptions
• in case the same service implementation from the same service provider

participates in multiple composites, a unique service identification number is
generated and all the basic information is replicated. Also, unique service
identification numbers would be generated for each case, if the same service

www.manaraa.com

220 S. Mallick and S.V. Subrahmanya

implementation from the same service provider is provided at different
combinations of cost and QoS attribute values.

• dummy interface identification numbers for the intermediate input and output
interface definitions for the notional non-exposed intermediate services in a
composite

• composite identification number for services in a composite (from same or
different service providers) – linked to the service identification of the participating
services in a composite

The preprocessing tool has some running serial number generators for:

• service identification number (it will implement a technique to generate different
numbers for the same service implementation from the same provider, when the
service participates in composites or in different cost, QoS combinations). Here we
use a simple technique of multiplying the original (a 2-digit number) service
identification with 100 and incrementing by 1 after that.

• provider identification number
• composite identification number – each time first among the participating services

arrives for entry
• interface doc identification number
• interface identification number – also capable of generating dummy interface

identification numbers

After the preprocessing step the each service (simple ones as well as the
participating services in a composite) is described by the following items (please refer
to service tuple definition in section 3). This forms the output of the preprocessing
stage and it is now ready as input for the core processing stage:

• service identification number
• stage number
• interface doc identification number
• input interface identification number
• input interface description
• output interface identification number
• output interface description
• cost value
• quality value
• composite identification number (zero in case of a simple service)

Core Processing (Stage 2 and 3)

After deriving the service in the desired implementation format the Stages 2 and 3
core processing is done. The following Classes definitions were used:

• Cluster (int cluster Id, Vector communities, Vector services) – holds the global
collection of services and communities. Corresponds to cluster-community
mapping table CL-CM.

www.manaraa.com

 Capturing Web Services Provider Constraints – An Algorithmic Approach 221

• Community (double inputInterfaceId, Vector services) – holds services having the
same input and output service interfaces; identified uniquely by the input interface
id of the contained services. Corresponds to the community-service mapping table
CM.

• Service (int serviceId, Provider provider, Stage stage, int cost, int qos, int
compositeId).

• ServiceInterface(double id, String contents, char type) – input / output interface.
• Stage (int stageId, ServiceInterface input, ServiceInterface output).
• Provider (providerId, HashMap counter) – contains running counters dedicated to

each stage for which the provider could provide multiple service implementations
in different configurations (cost, quality and composites).

• CompositeCommunity(HashMap communities, int compositeId, int rank) – holds
the communities forming a composite and running counter to rank the participating
communities / services in proper sequence. Corresponds to the rows in composite
community chain table CC.

• CommunityMatch(Community firstCommunity, Vector matchingCommunities) –
holds the pairs of matching communities for each community. A community in a
particular stage could have matching interface with one of more communities in
the next stage. Corresponds to a row in MT.

The main program uses the above classes and has the following global data
structures in Java™:

• Vector serviceList
• Vector clusters (corresponds to table CLT)
• HashMap compositeCommunityChain (corresponds to table CC, indexed on

compositeId)
• HashMap providers (indexed on providerId)
• HashMap communityMatches (corresponds to table MT, indexed on the primary

community)

The main program has the following methods operating on the above data
structures and classes to :

• createService (it accepts inputs from the preprocessing steps and populates the
serviceList global data structure)

• creatClusters (it creates clusters for the different stages and populates clusters
global data structure)

• populateClusters (it populates each Cluster with the relevant services)
• createCommunities (it creates Communities for each Cluster by operating on

service interface definitions as described in Section 5, and populates the Cluster
with the Communities)

• createNewCompositeCommunityAndAddService (in case the service has non-zero
composite Id a separate community is made for it, in which it will reside (refer to
step 4b of stage 2 of the algorithm); this community holding a single service is
added to the corresponding Cluster)

www.manaraa.com

222 S. Mallick and S.V. Subrahmanya

• matchCommunities (it matches the interface of the neighboring communities
which are not part of composites or are part of composites but occur towards the
beginning or end of a composite chain – refer to step 1 of Stage 3 of the algorithm)

• matchCompositeCommunities (it established matching among the neighboring
communities participating in a composite – refer to step 2 of Stage 3 of the algorithm)

• printObjects (it generates the matching among the different services from the
different providers, at various stages in the form of matrix or equivalent graphical
representation – the entries in the matrix table and weights on the links in the graph
are the cost / quality attribute values of the services)

The above implementation is generic enough to be applied to any service provider
configurations. The following set of inputs was provided to the tool:

Table 4. Input from service providers to the tool

In Table 4 there are five service providers for a three stage business process. There
are five composite services – four of them form composite from the same service
provider and one of them spans two service providers. Two of the composites span 2
stages and the other three span all the three stages. For all the participating services
(exposed or notional) the cost and quality attribute values remain the same (as it
denotes the entire composite).

The output after the preprocessing stage is given in Table 5, showing the generated
service identification numbers, interface doc identification numbers, input and output
interface identification numbers (some of them are dummies as they are never
exposed being in an intermediate position in a composite).

www.manaraa.com

 Capturing Web Services Provider Constraints – An Algorithmic Approach 223

Table 5. Result of pre-processing

It is important to note that identical input and output interface identification
numbers indicate interface compatibility (except for the dummy interfaces
identification numbers for interfaces internal to composites; these however pose no
problem during the interface matching stage as services part of composites are not
allowed to join with services outside the composites unless they form the end points
of these composites). These interface identification numbers are generated after
parsing of the WSDL files and evaluation of the interface description contents
(identical service descriptions lead to same interface identification numbers – possibly
leading to formation of communities). The interface identification numbers are
generated to facilitate the internal implementation of the algorithm and bear no real
significance to the final output.

The tool generates the following final output showing the categorization of the
services into clusters and communities as well as the matching among the
communities (and hence among the contained services):

Categorization of services into communities and clusters
cluster id = 1=======================
community id = 100.001------------------------------
service id = 111...............................
community id = 125.0------------------------------
service id = 13...............................
community id = 450.001------------------------------
service id = 131...............................
community id = 400.001------------------------------
service id = 141...............................
community id = 500.001------------------------------
service id = 151...............................
cluster id = 2=======================

www.manaraa.com

224 S. Mallick and S.V. Subrahmanya

community id = 200.001------------------------------
service id = 211...............................
community id = 350.001------------------------------
service id = 221...............................
community id = 200.0------------------------------
service id = 23...............................
community id = 750.001------------------------------
service id = 231...............................
community id = 800.001------------------------------
service id = 241...............................
community id = 1000.001------------------------------
service id = 251...............................
cluster id = 3=======================
community id = 300.0------------------------------
service id = 31...............................
service id = 32...............................
service id = 33...............................
community id = 600.001------------------------------
service id = 321...............................
community id = 1050.001------------------------------
service id = 331...............................
community id = 1200.001------------------------------
service id = 341...............................
community id = 1200.002------------------------------
service id = 342...............................

The matching among communities (services in these communities):
Format: communityId (serviceId,…) (matching) communityId(serviceId,…)

200.001(211,) 300.0(31, 32, 33,)
400.001(141,) 800.001(241,)
350.001(221,) 600.001(321,)
100.001(111,) 200.001(211,)
450.001(131,) 750.001(231,)
200.0(23,) 300.0(31, 32, 33,)
125.0(13,) 350.001(221,)
750.001(231,) 1050.001(331,)
500.001(151,) 1000.001(251,)
1000.001(251,) 1200.002(342,)
800.001(241,) 1200.001(341,)

From this list of community matches (and corresponding service matches) it is a
straigtforward step to generate a matrix or graphical representation of service matches
(and also using with the cost and quality attribute values stored in the respective
Service objects). Again, it is important to note that the actual values of the clustereId,
communityId and serviceId generated are of no real significance except for the fact
that they enable the algorithm implementation as well as identification of the services,
communities and clusters. The final list of service matching held in the Cluster and

www.manaraa.com

 Capturing Web Services Provider Constraints – An Algorithmic Approach 225

Community objects are of interest. The result of the above matching is depicted in
Fig. 3. Please note that service S23 does not have compatibility with any stage 1
service.

Fig. 3. Business process having three stages and five service providers has been demonstrated
by the implementation. The services have been represented by the generated service ids and the
matching among the different simple and composite services indicated by the arrows.

7 Conclusion

In this paper we developed an algorithm that takes as an input, constraints resulting
out of special service provider configurations that could occur due to business and
technical reasons, and generates output in the form of structured data ready for
equivalent graph theoretic representation of the multiple service provider optimization
problem. The graph theoretic representation thus derived could then be subjected to
various optimization techniques as has been shown in other works cited in this paper.

References

1. New to SOA and Web services, http://www-128.ibm.com/developerworks/webservices/
newto/#1

2. Lowe, J.W.: Pricing emerging web services, Geospatial solutions (January 2004)
3. Predicts 2007: SOA Advances, Gartner Research, ID No: G00144445 (November 17,

2006)

www.manaraa.com

226 S. Mallick and S.V. Subrahmanya

4. LaMonica, M.: Amazon servers, starting at 10 cents an hour (August 2006)
http://news.zdnet.com/2100-9584_22-6109202.html#

5. StrikeIron adds a Dozen New Web Services to its Marketplace (August 2006)
http://www.webservices.org/vendors/strikeiron_inc
/strikeiron_adds_a_dozen_new_web_services_to_its_marketplace /(go)/Articles

6. Zeng, L., et al.: Quality Driven Web Services Composition, WWW2003, Budapest (May
20-24, 2003)

7. Hung, P.C., Li, H.: Web services Discovery Based on the Trade-off between Quality and
Cost of Service: A Token-based Approach, ACM (2001)

8. Gao, A., Yang, D., Tang, T., Zhang, M.: Web Service Composition Using Integer
Programming-based Models. In: ICEBE’05. Proceedings of the 2005 IEEE International
Conference on e-Business Engineering, IEEE Computer Society Press, Los Alamitos
(2005)

9. Gao, Y., Na, J., Zhang, B., Yang, L., Gong, Q.: Optimal Web Services Selection Using
Dynamic Programming. In: ISCC’06. Proceedings of the 11th IEEE Symposium on
Computers and Communications (2006)

10. Grundy, J., Hosking, J., Li, L., Liu, N.: Performance Engineering of Service Compositions.
In: IW-SOSE’06, Shanghai (May 27-28, 2006)

www.manaraa.com

Soya: A Programming Model and Runtime

Environment for Component Composition Using
SSDL

Patric Fornasier1, Jim Webber2, and Ian Gorton3

1 Empirical Software Engineering, National ICT Australia and
School of Computer Science and Engineering, University of New South Wales

patricf@cse.unsw.edu.au
2 ThoughtWorks
United Kingdom
jim@webber.name

3 Pacific Northwest National Lab
WA 99352, USA

ian.gorton@pnl.gov

Abstract. The SOAP Service Description Language (SSDL) is a SOAP-
centric language for describing Web Service contracts. SSDL focuses on
message abstraction as the building block for creating service-oriented
applications and provides an extensible range of protocol frameworks
that can be used to describe and formally model component composi-
tion based on Web Service interactions. Given its novel approach, imple-
menting support for SSDL contracts presents interesting challenges to
middleware developers. At one end of the spectrum, programming ab-
stractions that support message-oriented designs need to be created. At
the other end, new functionality and semantics must be added to existing
SOAP engines. In this paper we explain how component developers can
create message-oriented Web Service interfaces with contemporary tool
support (specifically the Windows Communication Foundation) using
SSDL. We show how SSDL can be used as an alternative and powerful
metadata language natively alongside existing tooling without imposing
additional burdens on application developers. Moreover, we describe the
design and architecture of the Soya middleware which supports SSDL-
based development of Web Services on the WCF platform.

1 Introduction

Complex software systems can be constructed by composing many independently
developed components using rules from an architectural framework. Service-
oriented Architecture (SOA) [12] is the most recent design paradigm which
guides software architects during the composition of component-based distr-
ibuted software systems. In an SOA, independent components are called
services. Services use messages to communicate and exchange structured infor-
mation among each other while descriptions capture the form and patterns of

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 227–241, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

228 P. Fornasier, J. Webber, and I. Gorton

these interactions. Together, services, messages and descriptions form the three
main components of a basic SOA [5].

Web Services technology offers a suitable platform for building component-
based service-oriented systems. However, simply using Web Services
technologies will not automatically lead to a service-oriented system [25]. In
particular, WSDL, one of the oldest Web Services specifications, is procedure
call-centric and constrains Web Services practitioners from adopting a more
message-oriented mindset.

The SOAP Service Description Language (SSDL) [19] is an XML-based lan-
guage for describing message-oriented Web Services and can, in its crudest form,
be a direct replacement for WSDL. SSDL provides an extensible mechanism,
known as protocol frameworks, for capturing a service’s messaging behavior into
interaction protocols. These protocol frameworks are typically derived from for-
mal modeling techniques, which allow model checkers to verify the correctness of
a service (component) composition. Most importantly, the message-centric con-
cepts underlying SSDL provide a natural fit with service-oriented design princi-
ples and promise to hold solutions for some of the problems which limit WSDL.

This paper introduces a programming model that uses metadata embedded
in source code to describe SSDL contracts in a familiar, declarative manner. An
implementation of this programming model called Soya is presented and further
used to demonstrate how a runtime environment for SSDL-based Web Services
can be implemented.

In section 2 we discuss the background and motivation of our research. Sec-
tion 3 describes the notions and concepts of the SSDL language. We follow with
a detailed explanation of Soya in section 4. Finally, we conclude the paper by
providing an assessment of our current work and indicating future research di-
rections.

2 Background and Motivation

2.1 Why SSDL?

Web Services have matured into a commoditized platform for building servi-
ce-oriented systems and are having an enormous impact on interoperable dis-
tributed computing [23]. Using Web Services technology for creating distributed
applications, however, does not mean that a component-based architecture will
magically become service or message-oriented [25]. Specifically, WSDL’s focus
on operations as the primary abstraction for communication, for example, can
encourage developers to use it as a traditional Interface Description Language
(IDL) [14] and build systems that are architecturally similar to RPC-based sys-
tems. These solutions hence suffer from tight coupling at component and distri-
bution boundaries.

Vendor products often encourage developers to use WSDL to generate ser-
vice proxies for existing components (e.g. [22,10]) in order to shield the details
involved in accessing remote services. While this seems reasonable at first, it
eventually leads to brittle systems, because users of the service will not be aware

www.manaraa.com

Soya: A Programming Model and Runtime Environment 229

of the inherently fundamental differences between local and remote invocations
in terms of latency, memory space, concurrency and partial failure scenarios [31].
This is why calls across a network must be addressed by the programmer in ways
fundamentally different to invocations on local components.

In its current (draft) version, the WSDL 2.0 core specification [29] is over a
100 pages long and comments on it have not been favorable, mainly complaining
of its unnecessary weight and complexity [7]. Still, WSDL does not provide any
support for describing service protocols, apart from the eight simple message
exchange patterns that are defined in the WSDL adjuncts specification [30].
This means that given a WSDL contract, it is — except for the most trivial
cases — generally not possible to determine if a certain sequence of service
invocations will succeed or fail. To describe more complex interactions, additional
specifications such as WS-BPEL [13] or WS-Choreography [26] have to be used
in addition to WSDL. Unfortunately, this further increases the complexity of the
Web Service description [21].

Even though the W3C’s Web Services Architecture note [25] defines that a
Web Service has “an interface described in a machine-processable format (specif-
ically WSDL)”1, it acknowledges that there might be some other semantics apart
from the Web Services description (WSD) that are crucial for components to suc-
cessfully interact with each other. The note further states that the information
may not necessarily be “explicit, written or machine processable, but implicit,
oral or human oriented”2. Clearly, it is desirable to have Web Service descrip-
tions that are expressive enough to capture every aspect of the contract, there-
fore enabling full automation of the agreement on semantics and the subsequent
component interactions.

SSDL offers solutions to some of the problems that WSDL currently exhibits.
It presents a more lightweight approach to describing Web Services. By focus-
ing on messages, SSDL encourages the creation of loosely-coupled service-orien-
ted applications. Furthermore, SSDL supports developers working directly with
messages as their fundamental abstraction and discourages them from thinking
about exposing component interfaces directly as Web Services. Finally, provid-
ing mechanisms for capturing a service’s messaging behavior can be leveraged
in a number of ways by middleware. As a result, it can have positive effects on
service development, binding and execution and thus considerably simplify the
service lifecycle [3].

2.2 SSDL Tool Support

Unfortunately, almost no data exists that reports on experiences using SSDL as
part of Web Services-based SOAs. There is only one set of published results from
a project known to have used SSDL to model its services [4]. The lack of rich
empirical data makes it hard to assess the capabilities and potential of SSDL as
a service description language in a general sense.

1 W3C, Web Services Architecture, 2004, section 1.4.
2 W3C, Web Services Architecture, 2004, section 1.4.4.

www.manaraa.com

230 P. Fornasier, J. Webber, and I. Gorton

One reason why SSDL has not been used more widely is the lack of tool
support that aids developers in creating and consuming SSDL contracts. More
importantly, no runtime environment exists for executing SSDL-based Web Ser-
vices, thus preventing SSDL from being more than a specification on paper.
Therefore, we have developed Soya, which is a programming model and run-
time environment for creating and executing SSDL-based Web Services. Soya
is intended to serve as a research vehicle and its use in future case studies will
provide us with the empirical data we need to determine if the message-centric
and formally verifiable SSDL approach has significant benefits compared to the
incumbent approaches.

The implementation of Soya has presented a number of interesting challenges.
At one end of the spectrum, we wanted to create straightforward programming
abstractions that foster SSDL’s underlying message-oriented practices. At the
other end, we wanted to reuse contemporary SOAP-processing middleware and
equip it with new functionality and semantics related to SSDL. The solutions
we adopted to these issues, as well as the fundamentals of SSDL, are described
in the following sections.

3 SSDL Language Features

The SOAP Service Description Language (SSDL) is an XML-based language for
describing Web Services. It describes Web Services in a purely message-orien-
ted way, focusing on messages as the building blocks for creating service-oriented
applications. Hence fundamentally, SSDL provides the necessary mechanisms for
describing the structure of SOAP messages. It further offers an extensible range
of protocol frameworks that can be used to combine and relate messages into
protocols. These protocols describe the messaging behavior of a Web Service
and define how other services can interact with it. Additionally, some protocol
frameworks may be formally verified using model checkers to ensure the absence
of deadlocks or race conditions.

An SSDL contract can be separated into the following four major sections:

– Schemas: Defines the structure of SOAP message elements used by the
service, normally using XML Schema [28];

– Messages: Declares the SOAP messages that a service supports, including
body elements and header elements not inferred by an associated policy
document;

– Protocols: Defines how messages relate to each other and the valid se-
quences in which they can be exchanged. Different protocol frameworks can
be used, depending on the required level of formal verification and the num-
ber of parties involved in a protocol;

– Endpoints: Uses WS-Addressing [24] to define endpoints of Web Services
that are known to support the given contract.

SSDL assumes SOAP (over arbitrary transport protocols) together with WS-
Addressing as the only means of transferring messages between services. Con-
sequently, defining bindings for different transport protocols is unnecessary and

www.manaraa.com

Soya: A Programming Model and Runtime Environment 231

messages can be described in a more lightweight way compared to WSDL, which
does not explicitly target SOAP. Likewise, adopting SOAP from the outset gives
developers greater control over message structures, because it makes it possible
to define SOAP header elements as part of the contract. Figure 1 illustrates how
a message is defined in an SSDL contract.

<ssdl:messages targetNamespace="urn:my:messages" xmlns:s="urn:my:schema">
<ssdl:message name="MsgA">
<ssdl:header ref="s:MyHeaderX"

mustUnderstand="true" />
<ssdl:header ref="s:MyHeaderY"

role=".../ultimateReceiver"/>
<ssdl:body ref="s:MyBody" />
</ssdl:message>
</ssdl:messages>

Fig. 1. A message defined as part of an SSDL contract. The header and body refer to
XML schema elements.

Messages defined in this way can be combined and related into protocols that
capture a service’s messaging behavior. Making this information available to
consumers promotes protocol-based integration [21] rather than interface-centric
solutions. Currently, four protocol frameworks — MEP (Message Exchange Pat-
tern) [18], CSP (Communicating Sequential Processes) [17], Rules [8] and SC
(Sequencing Constraints) [32] — have been specified, but additional protocol
frameworks can be created and plugged into SSDL, if needed. Figure 2 exempli-
fies how a service’s messaging behavior can be captured using the SSDL Rules
[8] framework, which constrains incoming and outgoing messages using precon-
ditions. If desired, the same behavior could also be expressed using a different
protocol framework, for example if multiparty choreography is required.

<ssdl:protocol xmlns:rls="urn:ssdl:rules:v1">
<rls:rule>
<ssdl:msgref ref="m:MsgB" direction="out"/>
<rls:condition>
<ssdl:msgref ref="m:MsgA" direction="in"/>
<rls:not>
<ssdl:msgref ref="m:MsgC" direction="out"/>
</rls:not>

</rls:condition>
</rls:rule>
</ssdl:protocol>

Fig. 2. Messaging behavior specified using the SSDL rules protocol framework. The
protocol defines that MsgB can only be sent after MsgA has been received and before
MsgC has been sent.

www.manaraa.com

232 P. Fornasier, J. Webber, and I. Gorton

4 Soya

Soya [6] is an open-source implementation of the SSDL specification [20]. It
provides a programming model and runtime environment for creating and en-
acting SSDL contracts. Soya supports developers in building message-centric
applications and offers mechanisms to define message structures and messaging
behavior in a straightforward manner using metadata in order to express Web
Service contracts within the host language environment for a component. Soya
uses this component metadata to infer SSDL contracts that can then be exposed
to other services. Most importantly, Soya enables users to execute SSDL-based
Web Services. It ensures that incoming and outgoing service messages adhere to
the messaging behavior defined in a deployed SSDL contract and dispatches the
incoming messages to the the underlying component implementation.

The current prototype implementation of Soya is built on top of the Windows
Communication Foundation (WCF) [11]. WCF is an extensible framework which
can, amongst other styles, be used to build message-centric distributed appli-
cations.3 This and the comprehensive set of XML APIs included in the .NET
framework [9] were the main reasons why we chose WCF as the underlying com-
munication system for Soya. Figure 3 highlights the relationship between Soya
and WCF.

Soya Runtime Components

WCF

Custom Impl

Behaviors

Configuration

Soya System

Fig. 3. Soya. Configuration files, injected behaviors and custom classes modify WCF’s
runtime behavior. The Soya runtime provides the SSDL specific functionality.

4.1 Defining SSDL Contracts Using C# Attributes

C# attributes are a mechanism for declaratively embedding metadata in C#
component source code. This metadata adds additional information to the code
that can be retrieved, processed and interpreted by other programs. In WCF’s
programming model, service and message contracts are typically defined in this

3 Using WCF allows us to concentrate on implementing SSDL protocol support and
delegate issues like session management, failure recovery, efficient processing of
SOAP messages and so on to the underlying framework.

www.manaraa.com

Soya: A Programming Model and Runtime Environment 233

declarative manner [15]. Soya reuses this programming model and provides ad-
ditional SSDL-specific attributes and functionality. On one side this allows de-
velopers to define the structure of messages supported by an SSDL contract.
On the other side it describes how these messages relate to each other through
the use of different protocol frameworks. This attribute-oriented approach makes
it possible to specify contract data with very little code yet provides extensive
control over the contract when warranted.

In Soya, we have adopted the attribute-oriented programming model for the
following reasons:

– less code and hence less scope for error introduction;
– more easily maintainable due to single source location;
– seamless integration with WCF’s programming model and provision of fa-

miliar idioms to existing C# programmers.

Defining Messages. Where possible, we reused existing WCF attributes to
make the transition from WCF to Soya as smooth as possible. For concepts
unique to SSDL, however, we had to introduce additional attributes (e.g. mes-
sage names, message name-spaces, protocols . . .). The following code shows how
messages are defined in Soya using C# attributes:

[SsdlMessageContract] // Soya attribute
public class MsgA {

[MessageHeader] public string MyHeader;
[MessageBodyMember] public MyData MyBody;

}

[DataContract] // WCF attribute
public class MyData {

[DataMember] public int id;
[DataMember] public string code;

}

Attributes can take additional property parameters that can be used to over-
ride default values and give developers more control over the message data. For
example, to explicitly specify the qualified name of the SSDL message element
in the code above, one would simply define values for the Name and Namespace
properties as shown in the following code fragment:

[SsdlMessageContract(Name="...", Namespace="...")]

From the above examples, Soya infers the following XML Schema code, which
is part of the SSDL contract:

<xs:element name="MyHeader" type="xs:string"/>
<xs:element name="MyBody" type="s:MyData"/>
<xs:complexType name="MyData">

www.manaraa.com

234 P. Fornasier, J. Webber, and I. Gorton

<xs:sequence>
<xs:element name="id" type="xs:int"/>
<xs:element name="code" type="xs:string"/>

</xs:sequence>
</xs:complexType>

Additionally, Soya generates the following SSDL message element, which is
likewise included in the SSDL contract description:

<ssdl:message name="MsgA">
<ssdl:header ref="s:MyHeader"/>
<ssdl:body ref="s:MyBody"/>

</ssdl:message>

As illustrated in the above examples, Soya reuses attributes defined by WCF
wherever possible (e.g. MessageHeader, MessageBodyMember). Instead of gener-
ating WSDL, however, it uses the attribute metadata to create SSDL contracts.

Defining Messaging Behavior. Apart from defining messages supported by
an SSDL contract, Soya’s programming model may also be used to describe
how these messages relate to each other. Soya has been designed to accommo-
date SSDL’s extensible model and provides the necessary hooks to plug in new
protocol frameworks. Of the four initial SSDL protocol frameworks, the MEP
framework [18] is the simplest and least sophisticated. It does not demonstrate
SSDL’s full strength and has primarily been designed for capturing the Message
Exchange Patterns defined by WSDL [30] so it can be used as a simple SOAP-
centric language replacement for WSDL. The following lines show how simple
MEP protocol interactions can be modeled using Soya’s MEP attributes.

[Mep(Style=MepStyle.InOnly)]
public void Process(MsgA msg);

[Mep(Style=MepStyle.InOptionalOut, Out=typeof(MsgC),
Fault=typeof(FaultX))]
public void Process(MsgB msg);

The attribute on the first method declaration defines an in-only MEP in which
MsgA represents the incoming message. The second method declaration defines an
in-optional-out MEP with MsgB representing the incoming message, MsgC being
the outgoing message and FaultX standing for the optional fault message. From
this code, Soya can generate the following SSDL protocol information which
captures the messaging behavior in the SSDL contract:

<ssdl:protocol xmlns:mep="urn:ssdl:mep:v1">
<mep:in-only>
<ssdl:msgref ref="m:MsgA" direction="in"/>

</mep:in-only>

www.manaraa.com

Soya: A Programming Model and Runtime Environment 235

<mep:in-optional-out>
<ssdl:msgref ref="m:MsgB" direction="in"/>
<ssdl:msgref ref="m:MsgC" direction="out"/>
<ssdl:msgref ref="m:FaultX" direction="out"/>

</mep:in-optional-out>
</ssdl:protocol>

These examples show how Soya can use class information and attribute meta-
data to infer SSDL contracts. The examples also show how little additional code
is necessary to create an entire SSDL contract including XML Schema defini-
tions, protocol descriptions and method and fault declarations.

Exposing SSDL Contracts. The most fundamental purpose of a Web Service
description is to capture the semantics that describe how two or more services
can interact meaningfully, in a machine-processable format. It is thus crucial that
this description is exposed, so interested parties can retrieve it and reason about
the described service. This reasoning might range from simply checking a Web
Service’s compatibility to performing protocol-based integration of services [21].
The previous sections have suggested that Soya can infer SSDL from the service
classes and attribute metadata. Soya builds an internal service model from this
data. Using this model, Soya can generate an SSDL contract represented as XML
information set [27]. The infoset can then be serialized into XML and published
using, for example, HTTP or WS-Metadata Exchange [2].

4.2 Architecture and System Design

To better understand Soya, we distinguish between service deployment and ser-
vice execution. First, we describe how a service implementation is turned into
an executable instance and exposed to the network. Then, we illustrate what
happens inside Soya when other services interact with a deployed service and
how the Soya runtime enforces a service’s SSDL contract.

Service Deployment. In Soya a service implementation typically consists of
code representing the core application logic, metadata attributes describing the
service’s SSDL contract and configuration files specifying service endpoints, se-
curity settings and so on. A developer can deploy a service implementation by
opening a SoyaServiceHost instance, which is a custom host implementation of
WCF’s ServiceHostBase. The following two lines show how a service (in this
case MyService) is deployed:

host = new SoyaServiceHost(typeof(MyService));
host.Open();

Opening a SoyaServiceHost triggers the three following major activities,
which are also graphically illustrated in Figure 4:

1. Reflect over service classes (i.e. service code and attribute metadata) and
build an internal model representing the SSDL service contract from it;

www.manaraa.com

236 P. Fornasier, J. Webber, and I. Gorton

2. Process application configuration files and add further artifacts, such as ser-
vice endpoints or custom behaviors, to the internal model;

3. Create and configure WCF and Soya runtimes based on internal model.

.NET Assembly

Configuration

SoyaServiceHost

1

2

3

(contract, service,

behaviors)

(endpoints, bindings,

behaviors)

Internal Model

(WCF & SSDL)

Load and apply

configuration data

Build Soya and

WCF Runtimes

Reflect over types

and attributes to

build internal model

...

Fig. 4. Deployment of a service. The model is created from service type and attribute
information as well as configuration data. Then, it is used to initialize the WCF and
Soya runtimes.

Building the internal model constitutes most of the work the SoyaServiceHost
performs after the Open() method is called. The internal model can be seen as
an intermediary language between the service implementation and the SSDL
contract description. It is used by the runtime as a blueprint for creating new
stateful protocol instances and also to generate and expose SSDL metadata.

The SoyaServiceHost builds the internal model by reflecting over the service
classes and applying configuration settings. It first of all identifies the SSDL pro-
tocol framework that has been used to model the service’s messaging behavior
and then uses protocol specific classes to process the class and attribute meta-
data. This includes inferring XML schemas, interaction protocols, and message
descriptions and adding them to the model. Next, it processes the application’s
configuration files and adds further artifacts, such as service endpoints or custom
behaviors, to the internal model. Finally, both the WCF and the Soya runtimes
are created and configured. This includes injecting a message inspector into the
WCF runtime that will later be used to intercept inbound and outbound mes-
sages. The message inspector, shown in Figure 5, bridges the two runtimes by
passing intercepted messages from WCF to the Soya runtime. This terminates
the service deployment and enables other services to start interacting with the
deployed service through the specified endpoints.

Service Execution. When an incoming message is received from the network,
it is first of all pushed through WCF’s channel stack. The channel stack consists

www.manaraa.com

Soya: A Programming Model and Runtime Environment 237

of different elements that deserialize, decode and decrypt the incoming bits into
an untyped Message instance. Immediately after the message exits the channel
stack, it is intercepted by a custom message inspector and passed to the Soya
runtime for further processing.

Once a message is passed to the Soya runtime, the runtime firstly uses an
XsdValidator to validate the structure of the message’s elements. It compares
the header and body elements with the SSDL contract that is represented by the
service’s internal model and tries to locate the message in the current contract.
If the message validation or location fails, the message is rejected. Otherwise, the
message is further processed by an IProtocolValidator. This validator checks
if the incoming message is valid in terms of the messaging behavior defined in
the service’s contract (i.e. the protocol definition).

As opposed to the XsdValidator, which is stateless, the IProtocolValidator
needs to maintain state between interactions, as validation is based on the state
of a conversation in which the interacting services are at a given point in time.
Internally, this validation is performed with a state machine. It is built from the
protocol definition and the incoming and outgoing messages represent the state
transitions. If the message causes the state machine to transit to an invalid state,
the message is rejected. Otherwise, it is returned to the WCF runtime, where
the untyped Message instance is mapped into a user-defined message instance.
Finally, this user-defined message instance is dispatched to a local method of
the service implementation. Figure 5 illustrates this mechanism and the same
process (in reverse) applies to outgoing messages.

W
C
F
 R

u
n
ti

m
e

Soya Runtime
Dispatcher

MessageInspector

MessageFormatter

OperationSelector

Channel Stack

transport

encoding

protocol

protocol

Accept

incoming messages

Intercept

messages

Invoke service

method

Message to

CLR mapping

WWW

Validate protocol

state transition

Validate message

against XML

schemas

1

2

3

5

6

7

XsdValidator

MessageLocator

Protocol State Machine

SSDL Generator

Locate SSDL

message
4

Service

Fig. 5. Soya runtime architecture

www.manaraa.com

238 P. Fornasier, J. Webber, and I. Gorton

4.3 Intelligent Message Dispatching

In SSDL the concept of operations or service invocations does not exist. Interac-
tions between services are modeled purely as messages that are exchanged among
services. Messages represent self-contained units of information and do not con-
vey details of underlying APIs. SSDL expects that applications reason about the
sequence of messages and derive appropriate actions from this. This concept has
been described as the MEST (MESsage Transfer) architectural style [16].

Just like SOA, SSDL and MEST do not have operation abstractions, Soya
does not have them either. Of course, since Soya is built using an object-oriented
programming language, a local API method is ultimately invoked. This method,
however, is not part of the service contract, but belongs to the service’s internal
implementation, thus enforces loose coupling. Soya inspects incoming messages
and decides to which internal method the message should be dispatched. This
decision is exclusively based on the messaging behavior defined in the service’s
contract and the state of the current conversation. Method names play no role
in this decision-making process, meaning that given a different protocol state
multiple arrivals of the same message type can result in a different dispatching
behavior. This is illustrated in the following C# pseudo-code.

[Rule(Condition="!(MsgB == In)")] (1)
public void ProcessX(MsgA msg) {}

[Rule(Condition="MsgB == In")] (2)
public void ProcessY(MsgA msg) {}

[Rule(Condition="MsgA == In && !(MsgB == In)")] (3)
public void ProcessZ(MsgB msg) {}

The above pseudo-code defines three different methods for processing incom-
ing messages. Messages of type MsgA are dispatched to the first method as long
as no message of type MsgB has been received. MsgB can be received exactly once
(after one or more messages of type MsgA have been received) and is dispatched
to the third method. After that, incoming messages of type MsgA are dispatched
to the second method. The state machine that we can infer from this is shown
in Figure 6.

Each method contains service logic that does something based on the type of
message and the current conversation state. If we had no protocol metadata, the
first and second methods would be ambiguous. A service developer would need
to write application code to determine the conversation state of the application,
correlate messages and finally dispatch them to the correct logic. We understand
that this imposes a significant burden on the developer. Therefore, Soya takes
advantage of the protocol metadata and infers a state machine that defines the
correct order of the exchanged messages. The state machine is used to decide to
which methods messages need to be dispatched. Presenting the developer with
this abstraction eliminates the confusion as what needs to be implemented.

www.manaraa.com

Soya: A Programming Model and Runtime Environment 239

MsgAMsgA

MsgA
Y

MsgB
Z

MsgA
X

Fig. 6. State machine inferred from protocol metadata. X, Y and Z stand for the methods
to which the message relating to the incoming transition will be dispatched.

5 Conclusion and Future Work

Web Service descriptions are machine-processable documents that capture the
semantics that define how two services can interact meaningfully. Normally, Web
Service descriptions are written in WSDL. In this paper we accept that there
are significant drawbacks with WSDL for building service-oriented applications
(e.g. focus on operations rather than messages, insufficient control over SOAP
messages, high complexity, not expressive enough to capture sophisticated mes-
saging behavior). The target for our empirical work instead uses an alternative
Web Services description language called SSDL. Given the lack of empirical data
on using SSDL as part of Web Services-based SOAs, we identified the need to
further investigate and assess the capabilities of SSDL through empirical studies.

To that end we have developed Soya, a programming model and runtime en-
vironment for creating and executing SSDL-based Web Services. We have pre-
sented programming abstractions that not only allow developers to build SSDL
services in a straightforward way but also encourage the creation of truly ser-
vice-oriented applications without imposing unrealistic development burdens.
Further, we have provided a detailed explanation of how we leveraged a contem-
porary SOAP engine by adding functionality and semantics related to SSDL,
thus providing an advanced runtime environment for executing SSDL-based Web
Services to the community.

The development of Soya has provided an extremely valuable insight into
the creation, deployment and runtime enactment of SSDL contracts. In future
investigations and case studies, we will use Soya as a research vehicle through
which we can express our needs and experiences related to SSDL. Specifically,
we will use Soya and SSDL to create a service-oriented system in the context of
the Australian lending industry [1]. One one side, this will help us to validate
the usability of Soya’s programming model and the proper functioning of its
runtime environment. On the other side, these experiments will provide us with
the empirical data we need to determine, whether describing Web Services in
SSDL has significant benefits compared to the incumbent approaches.

Acknowledgments

We would like to thank Liming Zhu, Savas Parastatidis and Pawel Kowalski for
their constructive feedback and valuable support in creating this document.

www.manaraa.com

240 P. Fornasier, J. Webber, and I. Gorton

National ICT Australia is funded through the Australian Government’s Back-
ing Australia’s Ability initiative, in part through the Australian Research Council.

References

1. Lending Industry XML Initiative (LIXI). http://www.lixi.org.au
2. Ballinger, K., et al.: Web services metadata exchange, version 1.1 (2006)
3. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing

web service protocols
4. de Mello, E.R., Parastatidis, S., Reinecke, P., Smith, C., van Moorsel, A., Webber,

J.: Secure and provable service support for human-intensive real-estate processes.
Technical report, University of Newcastle upon Tyne: Computing Science (2006)

5. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design.
Prentice Hall PTR, Englewood Cliffs (2005)

6. Fornasier, P.: Soya - SSDL engine. http://soya.sourceforge.net
7. Hinchcliffe, D.: Web service description languages: When there is nothing left to

take away (2005) http://hinchcliffe.org/archive/2005/05/10/215.aspx
8. Kuo, D., Parastatidis, S., Webber, J.: Rules SSDL protocol framework. Technical

Report CS-TR-902, School of Computing Science, University of Newcastle upon
Tyne (2005)

9. Microsoft Corporation: .NET framework 3.0. http://www.netfx3.com/
10. Microsoft Corporation: Web services description language tool (wsdl.exe)

http://msdn2.microsoft.com/en-us/library/7h3ystb6.aspx
11. Microsoft Corporation: Windows communication foundation (WCF) http://

wcf.netfx3.com/
12. OASIS. Reference model for service oriented architecture v 1.0. (2006) http://

www.oasis-open.org/committees/soa-rm/
13. OASIS. Web services business process execution language version 2.0. (2006)

http://docs.oasis-open.org/wsbpel/2.0/
14. Object Management Group. IDL syntax and semantics chapter. http://

www.omg.org/cgi-bin/doc?formal/02-06-39
15. Pallmann, D.: Programming INDIGO. Microsoft Press (2005)
16. Parastatidis, S.: The MEST architectural style (2004)

http://savas.parastatidis.name/2004/11/09/92ede84c-ca1f-41ab-8feb-
8ba50d07e86f.aspx

17. Parastatidis, S., Webber, J.: CSP SSDL protocol framework. Technical Report CS-
TR-901, School of Computing Science, University of Newcastle upon Tyne (2005)

18. Parastatidis, S., Webber, J.: MEP SSDL protocol framework. Technical Report CS-
TR-900, School of Computing Science, University of Newcastle upon Tyne (2005)

19. Parastatidis, S., Webber, J., Woodman, S., Kuo, D., Greenfield, P.: An introduction
to the SOAP service description language. Technical Report CS-TR-898, School of
Computing Science, University of Newcastle upon Tyne (2005)

20. Parastatidis, S., Webber, J., Woodman, S., Kuo, D., Greenfield, P.: SOAP service
description language (SSDL). Technical Report CS-TR-899, School of Computing
Science, University of Newcastle upon Tyne (2005)

21. Parastatidis, S., Woodman, S., Webber, J., Kuo, D., Greenfield, P.: Asynchronous
messaging between web services using SSDL. Internet Computing, IEEE 10(1),
26–39 (2006)

22. The Apache Software Foundation. Axis2. http://ws.apache.org/axis2/

http://www.lixi.org.au
http://soya.sourceforge.net
http://hinchcliffe.org/archive/2005/05/10/215.aspx
http://www.netfx3.com/
http://msdn2.microsoft.com/en-us/library/7h3ystb6.aspx
http://wcf.netfx3.com/
http://wcf.netfx3.com/
http://www.oasis-open.org/committees/soa-rm/
http://www.oasis-open.org/committees/soa-rm/
http://docs.oasis-open.org/wsbpel/2.0/
http://www.omg.org/cgi-bin/doc?formal/02-06-39
http://www.omg.org/cgi-bin/doc?formal/02-06-39
http://savas.parastatidis.name/2004/11/09/92ede84c-ca1f-41ab-8feb-8ba50d07e86f.aspx
http://savas.parastatidis.name/2004/11/09/92ede84c-ca1f-41ab-8feb-8ba50d07e86f.aspx
http://ws.apache.org/axis2/

www.manaraa.com

Soya: A Programming Model and Runtime Environment 241

23. Vogels, W.: Web services are not distributed objects. IEEE Internet Comput-
ing 7(6), 59–66 (2003)

24. W3C. Web services addressing (2004)
http://www.w3.org/Submission/ws-addressing/

25. W3C. Web services architecture (2004) http://www.w3.org/TR/ws-arch/
26. W3C. WS choreography model overview (2004) http://www.w3.org/TR/

ws-chor-model/
27. W3C. XML information set (2nd edn.) (2004) http://www.w3.org/TR/

xml-infoset/
28. W3C. XML schema (2004) http://www.w3.org/XML/Schema
29. W3C. Web services description language (WSDL) version 2.0 part 1: Core language

(2006) http://www.w3.org/TR/wsdl20/
30. W3C. Web services description language (WSDL) version 2.0 part 2: Adjuncts

(2006)http://www.w3.org/TR/wsdl20-adjuncts/
31. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.: A note on distributed computing.

Technical report, Sun Microsystems Laboratories, Mountain View, CA (1994)
32. Woodman, S., Parastatidis, S., Webber, J.: Sequencing constraints SSDL protocol

framework. Technical Report CS-TR-903, School of Computing Science, University
of Newcastle upon Tyne (2005)

http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/ws-chor-model/
http://www.w3.org/TR/ws-chor-model/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/TR/xml-infoset/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/wsdl20/
http://www.w3.org/TR/wsdl20-adjuncts/

www.manaraa.com

Experience with Safe Dynamic Reconfigurations in
Component-Based Embedded Systems

Juraj Polakovic1,2, Sebastien Mazare1, Jean-Bernard Stefani2,
and Pierre-Charles David3,�

1 FranceTelecom R&D, MAPS/AMS Lab, Grenoble, France
2 SARDES Project, INRIA Rhône Alpes, Grenoble, France

3 OBASCO Group, EMN/INRIA, Lina, Nantes, France

Abstract. Supporting dynamic reconfiguration is required even in highly con-
strained embedded systems, to allow software patches and updates, and to allow
adaptations to changes in environmental and operating conditions without service
interruption. Dynamic reconfiguration, however, is a complex and error prone
process. In this paper we report our experience in implementing safe dynamic re-
configurations in embedded devices with limited resources. Our approach relies
on a component-based framework for building reconfigurable operating systems,
and the use of a domain specific language (DSL) for reconfiguration.

1 Introduction

Dynamic reconfiguration refers to the process of modifying a system’s structure and
behavior during its execution. Even in memory and energy constrained devices such
as networked sensors or embedded appliances, dynamic reconfiguration is required to
allow software patches and security updates, functional updates (e.g. introducing a new
protocol), or the adaptation to new operating conditions, while ensuring service con-
tinuity. Dynamic reconfiguration, however, is a complex process, which can be very
error-prone, as the reconfiguration programmer must maintain both the architectural
and behavioral integrity of the system under modification. For example when replacing
a module in a multi-threaded operating system, a quiescent state must be achieved, and
the interface offered by the module must match what the rest of the system expects. (for
a discussion of the intricacies of dynamic reconfiguration see e.g. [4, 29]).

Existing software infrastructures for embedded devices with limited resources such
as e.g. TinyOS [19], Contiki [8], SOS [16], Mantis [3], FlexCup [23], either do not sup-
port dynamic reconfiguration (TinyOS), or provide low-level mechanisms for dynamic
reconfiguration — typically dynamic linking of modules or components — that do not
alleviate the issues involved in programming safe reconfigurations.

This paper reports our experiences with the implementation of a support for safe
reconfigurations on embedded devices with limited resources. We rely on the THINK

framework for the construction of component-based operating systems [11], that im-
plements the FRACTAL reflective component model [5], to construct reconfigurable
embedded software [25]. Safety of reconfigurations is achieved by a combination of

� This work has been done while the author was a post-doctoral fellow in France Telecom R&D.

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 242–257, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Experience with Safe Dynamic Reconfigurations 243

architecture-based component replacement, and the use of a novel domain specific lan-
guage (DSL), called FScript [6], that allows the succinct expression of modifications to
a running architecture, and that supports various sanity checks on reconfiguration pro-
grams. This paper discusses our approach, and the associated support for the FScript
language, with respect to goals of flexibility, efficiency, safety and simplicity of recon-
figurations.

The remainder of this paper is structured as follows. In section 2 we describe our
use case and discusses the challenges faced when designing and implementing a oper-
ating systems supporting safe reconfigurations. Section 3 details our approach for con-
structing reconfigurable operating system kernels and programming reconfigurations.
The support for the FScript language is crucial, we show in section 4 the obtained im-
plementation results. Section 5 discusses the lessons we learned and the future work.
Follows a discussion of existing research and section 7 concludes the paper.

2 Use Case and Challenges

Use case: the Cognichip. Our objective is to allow reconfigurations on our target plat-
form, called the Cognichip, based on the Atmel AVR ATmega128 8-bit micro-controller
with 4kb data memory and 128kb code memory. We are currently experimenting ap-
proaches to construct mobile intelligent networked objects with cognitive radio [24] on
top of this platform. At run-time, the Cognichip can be extended with different plugin
devices, such as various sensors or device controllers enabling the Cognichip to act as
a small intelligent information router. This feature requires to add additionnal drivers
at run-time. Furthermore, informations from these devices are handled by applications
installed either by the user or by a third-party, like the home internet provider, that also
can be changed during the execution. With the THINK framework we already construct
applicative operating systems tailored to this platform [15]. The operating system and
the application are built as a unique THINK-based component-system. We want to en-
able dynamic reconfiguration of the system and application components, in order to
support bugfixes, to reconfigure the underlying radio protocol components, and to add
or remove device drivers. The addition of device drivers may require the reconfiguration
of some low-level system components, for example adding a new brick in the protocol
stack that requires a different timer implementation.

Challenges. Designing and implementing dynamic reconfiguration mechanisms in an
embedded operating system is a challenging task. Issues related to reconfiguration
mechanisms have an impact on the design of the system itself and must be consid-
ered early in the development phases. In order to replace a component in a system, the
part of the system to be reconfigured (thetarget) must be clearly identified. Then, before
the reconfiguration takes place, the reconfiguration target must reach a stable state. A
common notion of stable state is that of quiescent state, i.e. a state in which no activ-
ity currently takes place in the target. When this quiescent state is detected, the state
of the target must be captured and transferred to the new component, and the change
of configuration can now take place. The change of configuration can imply changing
some attributes, modifying the connections between modules, as well as altering the

www.manaraa.com

244 J. Polakovic et al.

software architecture of the reconfiguration target. Before resuming the execution after
the configuration change, the references to the old component must be redirected to the
new one. As such, reconfiguration mechanisms in embedded operating systems raise
new challenges beyond the operating system construction. We consider four main goals
for a dynamic reconfiguration mechanism, already described by Hicks and Nettles [18],
however adapted to embedded operating system construction and to the above use-case:
(i) Flexibility Any part of the system should be reconfigurable, especially the system
should not impose any non-reconfigurable core set of components. (ii) Efficiency and
Minimality The reconfigurable operating system support for safe reconfigurations must
respect performance constraints of the target platform. For embedded devices these
limitations can vary from memory usage or CPU consumption, to power consumption
or timing requirements of reconfigurations. (iii) Safety By safety of reconfigurations we
mean that erroneous reconfigurations won’t compromise the system consistency, i.e. the
resulting architecture is valid. The reconfigurable system must also guarantee a behavior
correctness during reconfigurations, e.g. that a module is not removed while accessed.
(iv) Simplicity The reconfiguration process, including programming complex reconfig-
urations, must be simple for the reconfiguration programmer, in order to minimize the
introduction of errors.

3 Foundations: FRACTAL, THINK and FSCRIPT

3.1 The FRACTAL Component Model

FRACTAL is a hierarchical and reflective component model intended to implement, de-
ploy and manage a wide range of software systems including operating systems and
middleware [5].

A FRACTAL component is both a design and a runtime entity that constitutes a unit
of encapsulation, composition and configuration. Components provide server interfaces
which are the access points to the services that they implement. They express their ser-
vice requirements via client interfaces. FRACTAL distinguishes two kinds of compo-
nents. Primitive components are implemented in a host programming language (e.g. C,
Java) and can be seen as black boxes providing and requiring services through their
interfaces. Composite components correspond to a composition of other components
(called subcomponents), either primitives or composites. The existence of composite
components makes the FRACTAL Component Model a hierarchical component model.

Components in the FRACTAL component model interact via client/server bindings.
A binding constitutes a communication path between components and can implement
arbitrary forms of communication (e.g asynchronous requests, synchronous requests
and replies, multicasting and so forth). The simplest form of binding is a language
reference (e.g. a method invocation).

A FRACTAL component logically comprises two different parts. The internal part,
that we call content implements the functional interfaces of the component. The con-
tent is encapsulated by a membrane which can implement control over its behavior.
In addition to the functional interfaces of a component, the membrane can provide an
arbitrary set of control interfaces.

www.manaraa.com

Experience with Safe Dynamic Reconfigurations 245

The presence of control interfaces makes FRACTAL a reflective component model
where control interfaces provide the means to observe and manipulate the internal struc-
ture of a component. An important point is that the FRACTAL component model does
not mandate a fixed and predefined meta-object protocol (i.e. a set of control interfaces).
Instead, a programmer can define and implement his own set of control interfaces.

FRACTAL defines some standard control interfaces in order to manipulate a com-
ponent’s interfaces, its subcomponents, its client bindings, attributes, or its life-cycle
(respectively called ComponentIdentity1, ContentController, Binding-
Controller, LifeCycleController).

FRACTAL components and FRACTAL component architectures can be described us-
ing an architecture description language (ADL). The FRACTAL ADL is a high-level
declarative language in which programmers express software configurations in terms
of interfaces, attributes, component compositions and bindings. Using the membrane
construct, the programmer can specify which membrane to apply to a given component.
An example of an ADL description is given in Figure 1.

buffer

CI,LCC,SC

SmallNetKernel

alloc

CI, BC, LCC, NC

buffer

CI, BC, LCC, NC

net eth

allocator

CI, LCC, SC, NC

drivernet

CI, BC, LCC, RC, CC, NC

CI: ComponentIdentity
BC: BindingController
CC: ContentController

LCC: LifeCycleController
RC: ReconfigurationController
SC: StateTransferController
NC: NameController

 composite SmallNetKernel {

 provides net.api.Net as net

 provides util.api.Buffer as buffer

 contains net = net.lib.tcpip

 contains eth = chip.net.tulip

 contains buffer = util.lib.buffer

 contains alloc = memory.lib.malloc

 binds net.driver to eth.driver

 binds net.alloc to alloc.alloc

 binds buffer.alloc to alloc.alloc

 binds this.net to net.net

 binds this.buffer to buffer.buffer

 membrane Reconfig_ThreadCounting

 }

Fig. 1. A simplified view of a simple reconfigurable THINK-based kernel and its ADL description.
The kernel provides a network interface and a buffer interface. The eth component implementing
the network driver is architecture-dependent. The FRACTAL control interfaces are added to the
components by the THINK ADL compiler based on the membrane keyword.

3.2 THINK

THINK is a general framework for building component-based systems and especially
operating system kernels. The framework comprises a C implementation of the FRAC-
TAL component model, an ADL with the associated ADL-to-C compiler, we call THINK

ADL compiler, and a component library, called Kortex.
The initial version of THINK [11] was based on a flat component model. Our current

version is now entirely based on the hierarchical FRACTAL component model. Thanks

1 Called simply Component in the latest FRACTAL specification.

www.manaraa.com

246 J. Polakovic et al.

to the reflective capabilities of FRACTAL, a kernel architecture can be retrieved at run-
time. If the kernel has a static architecture, i.e. it doesn’t contain any component facto-
ries that could alter its architecture, the run-time kernel architecture is equivalent to the
initial ADL description.

In a THINK-based OS everything is a component and with an adapted reconfigura-
tion base mechanism, every component is reconfigurable. There is no predefined non-
reconfigurable core, nor a core set of required components. In this way, we can build
customized reconfigurable operating systems, including only the needed components.
Such systems can range from small devices like networked sensors [15] to bigger de-
vices, like handhelds, offering more functionality.

THINK-based OS are built using the THINK ADL compiler. This compiler translates
the ADL code to ANSI C and compiles and links the generated code with component
implementations (also written in C) using a standard C compiler and linker. The gener-
ated C code obeys to a binary format for components detailed in [11].

The THINK framework was lately enhanced with a number of base mechanisms for
replacing safely a component without interrupting the service [25]. These mechanisms
provide the detection of quiescent state, state transfer and reference redirection and are
implemented as FRACTAL control interfaces.

The THINK framework provides several implementations for these interfaces. For
a given component, the kernel developper chooses the appropriate set via the ADL
membrane keyword and the THINK ADL compiler includes the appropriate interface
implementations for reconfigurable components. Note this approach is extremely flexi-
ble and allows to specify different mechanisms at the scope of a single component.

– Quiescent state Quiescent state algorithm is provided via the component’s Re-
configurationController interface implementation. In our previous work
[25], we implemented two quiescent state algorithms for THINK-based kernels –
thread-counting and dynamic interceptors.

– State transfer We have defined a StateTransferController interface that
gives access to a component’s internal state and allows us to build complex state
transfers. It is up to the component programmer to implement this interface.

– Reference redirection Once a reconfiguration succeeded, client references are redi-
rected using the standard BindingController interface of the client compo-
nents.

– The actual architecture modifications are performed by the ContentControl-
ler interface implementation that can add or remove components from a compos-
ite component.

– The LifeCycleController interface serves to initialize (start) or to stop a
component, used to initialize a hardware driver or shutdown properly a device.

Consider the example of the SmallNetKernel shown in figure 1. The kernel de-
veloper writes the ADL description for the SmallNetKernel as shown in the fig-
ure below the graphical view of the kernel. Based on the membrane specification of
this ADL description, the THINK ADL compiler will automatically generate FRACTAL

control interface implementations for the SmallNetKernel component, concretely
including the thread-counting quiescence algorithm. The graphical view shows the re-
sulting set of control interfaces of the components.

www.manaraa.com

Experience with Safe Dynamic Reconfigurations 247

3.3 The FScript DSL

The FRACTAL component model is defined in terms of APIs which make it possi-
ble both to discover the structure of a FRACTAL application and to reconfigure it at
runtime. However, programming dynamic reconfigurations directly at this level make
the code verbose, difficult to understand, and prevent analyzes to guarantee the be-
haviour before of the reconfigurations executing them, which can be essential for critical
systems. FScript [6] is a Domain Specific Language [30] designed to overcome these
limitations while retaining FRACTAL’s advantages. FScript can be used to navigate in-
tuitively inside a FRACTAL architecture and select parts of it, on which reconfigurations
(either primitive FRACTAL operations or user-defined scripts) can then be applied. Here
is a simple example of reconfiguration programmed in FScript which illustrates all of
FScript constructs.

action auto-bind(c) = {
// Selects the interfaces to connect
clts := $c/interface::*[required(.)][not(bound(.))];
foreach i in $clts do { // Search for candidates interfaces
srvs := $c/sibling::*/interface::*[compatible($i, .)];
if (not(empty($srvs))) { // Connect one of these candidates

bind($i, one-of($srvs));
}

}
return $c/interface::*[required(.)][not(bound(.))];

}

This defines a new reconfiguration action named auto-bind, which automatically
connects a component’s required interfaces by discovering the compatible server inter-
faces on sibling components. The body of the action consists in a sequence of simple
statements (assignments, procedure calls and return) and control structures (iteration
and conditionals).

As can be seen in this example, FScript uses a special notation to navigate inside
the architecture and select elements from it. This notation, called FPath, is roughly in-
spired by XPath [31] and supports the same kinds of queries on FRACTAL architectures
that XPath supports for XML documents. FPath expressions are used to navigate in-
side the architecture to select specific elements. The architecture is seen as a directed
graph where nodes represent components, their interfaces, methods and attributes. The-
ses nodes are connected by labeled arcs representing the relationships between them:
for example, a component node is connected to all its interfaces’ nodes by arcs labeled
interface. Each step of a path starts from an initial set of nodes and selects a new
set by following one of these relationships. The resulting nodeset can then be filtered
by name or by complex predicate expressions (including embedded path expressions).

As a concrete example, the second FPath expression in the above example (line
6) can be read as: “Starting from component $c, first select all its siblings (compo-
nents which share at least one direct parent) in the architecture, whatever their name
is (/sibling::*). Then, given these new components, select all their interfaces
(/interface::*), but return only those for which the predicate in brackets holds.
In this case, the predicate tests whether its parameter (denoted by a dot .) is compatible
with the interface in the iteration variable $i.” In short, this request will select all the

www.manaraa.com

248 J. Polakovic et al.

interfaces owned by siblings of the parameter component which can be bound to $i
(itself a required interface of $c which is not bound yet, see line 3).

FScript provides an extensible library of primitive functions and actions which gives
the user access to all the features of the FRACTAL API. These primitives can be com-
bined to create complex reconfiguration scripts using a voluntarily limited set of the
control structures which, with the interdiction of recursive definitions, enable us to guar-
antee the termination of all reconfigurations: classical conditionals (if/then/else),
iteration (foreach i in path do { body } on the result of an FPath expres-
sion (path), which always return a finite set of elements, and finally explicit and early
return from an action (return). Compared to the use of the standard FRACTAL APIs
in a general purpose language, FScript offers a number of advantages, which we discuss
below.

Expressiveness gain. In THINK-based OS reconfigurations are performed in terms of
operations allowed by the FRACTAL component model. The following sequence is
necessary to replace the alloc component in the SmallNetKernel kernel shown
in figure 1 (the new component is called new_alloc): (1)add the new component
to the SmallNetKernel; (2) suspend the execution of the alloc component; (3)
stop the alloc component (for example driver shutdown); (4) (retrieve state from the
alloc component)2; (5) (inject state to the new_alloc component)5; (6) redirect
the net component to use new_alloc; (7) redirect the buffer component to use
new_alloc; (8) start the new_alloc component (for ex. initializations); (9) resume
the execution in the SmallNetKernel component; (10) remove the unused alloc
component. In FScript we would write the following reconfiguration code to achieve
this reconfiguration:

k = $root/child::kernel stop($o);
n := new(’new_alloc’); unbind($k_alloc);
o := $root/child::alloc; bind($k_alloc,
k_alloc := $n/interface::alloc);

$k/child::*/interface::alloc start($n);
add($k, $n); resume($k);
suspend($k, $k/child::alloc); remove($o);

The above shown FScript code shows the simplicity of our approach. In the shown
code, the programmer expresses all needed operations to perform a dynamic recon-
figuration. An equivalent C code is much harder to understand. For example, the bind
operation corresponds to the bindmethod of the BindingController and accepts
two parameters, the first FPath expression selects the alloc interface of the kernel
component, the second FPath expression selects the alloc interface of the new inter-
face. The equivalent C code is written in 10-20 lines of C code (considered without
error handling that adds to the complexity and decrease readability of the C code). In
the C code, we will find temporary variables to resolve real component locations and to
obtain interface handles to finaly invoke the bind implementation.

Correctness checks. Correctness is obtained by simulation of the reconfiguration at
compile-time and by generating error handling code, thus at run-time.

2 For the sake of simplicity, we do not consider the state transfer in this prototype evaluation.
State transfer mechanisms can be built using the StateTransferController.

www.manaraa.com

Experience with Safe Dynamic Reconfigurations 249

At compile-time, the FScript compiler checks if the code is conforming to the target
architecture. It verifies the conformance of interface types, the existence of components
and the correct use of suspend/resume quiescent state operations. Performing these ver-
ifications at compile-time reduces the resulting size of the compiled reconfiguration
code to be loaded by the target device in its constrained environment.

An explicit error-handling code can be written by the reconfiguration programmer
in the FScript program, serving to perform additional architecture verifications at run-
time. A checking code is automatically generated by the FScript compiler. It serves
to make low-level C checks, as null pointers etc. preventing the possible crash of the
system.

Easier evolutions in kernel architecture. FScript reconfiguration programs are easier to
adapt and maintain over time. This is not the case of hand-written C code for reconfig-
uration. Consider the following scenario: the above described reconfiguration is com-
monly applied to change the allocator performances in some of the deployed embedded
devices running a first generation of the SmallNetKernel, without the buffer in-
terface. For some reasons the SmallNetKernel was updated and the new version
provides a buffer implementation that uses the allocator component, as shown in fig-
ure 1. We need to change only one line in the FScript program to fit this scenario - the
bind operation.

4 Implementation and Results

4.1 Implementing Support for FScript

We found that there were several possible strategies for implementing the FScript com-
piler, the central piece of our approach. We first discuss the implementation strategies
and show our implementation together with the obtained results in the following sec-
tion 4.2. The first general idea is to provide an interpreter in the native environment,
embedded in the target operating system. All FScript programs are addressed to this
interpreter and are interpreted and executed on the target platform.

The second strategy consists in compiling FScript programs on a remote host into
a binary form, ready to be loaded and executed on the target platform. This approach
alleviates the requirements on the reconfiguration support on the target platform. All
necessary program verifications can be performed at compile time, resulting in a safe
reconfiguration code. However, in such a distributed architecture, the FScript compiler,
running on the reconfiguration host, has to know or retrieve the software architecture of
the target OS and probably some additional meta-data. The retrieval of the software ar-
chitecture is enabled with the use of the FRACTAL component model where component
architecture representation is explicitly maintained at run-time.

There are several variations of this approach, shown in figure 2. The first variant
(we call systematic synchronization in figure 2a), retrieves systematically the current
configuration of the device’s OS on each reconfiguration request. The variant shown in
figure 2b, no synchronization makes assumption that the software architecture of the
target subsystem to reconfigure evolves only through reconfigurations. For the sake of
completeness, figure 2c, reconfiguration via proxies, shows an implementation of the

www.manaraa.com

250 J. Polakovic et al.

FScript
Reconfiguration

Compilation Host

Device +
Reconfigurable

Device-OS

communication
link

reconfiguration

meta-data
(ADL + binary

image)

reconfiguration
component

FScript
Reconfiguration

Program

FScript
Reconfiguration
Compilation Host

Device +
Reconfigurable

Device-OS
communication

link

FScript
Reconfiguration

Program

(Re)-
Configuration

API
proxy

FScript
Reconfiguration

Compilation Host

Device +
Reconfigurable

Device-OS

communication
link reconfiguration

device
configuration

ADL/AST

reconfiguration
component

FScript
Reconfiguration

Program

a) systematic synchronization

b) no synchronization

c) reconfiguration via proxies

Fig. 2. Offline compiler: different implementations of synchronization between the FScript com-
piler and the target OS

synchronization using a proxy component system on the reconfiguration host having
identical configuration as the target system and that forwards all reconfiguration actions
to the former.

The choice of a solution for the FScript support implementation will depend on the
hardware constraints of the target platform, criteria defined by the operating system or
by the network provider the embedded system is connected to. We implemented an of-
fline FScript compiler without synchronization and show the obtained implementation
results in the next section.

4.2 An Offline FScript Compiler

For evaluation purpose we implemented an FScript compiler without synchronization
(Figure 2b). In order to validate the minimality of our approach and evaluate the suit-
ability for a platform like the above described Cognichip, we built a small prototype
kernel on an 32-bit ARM-based handheld device. We are interested in evaluating the
memory overhead of the run-time support for FScript and the amount of data trans-
ferred to the reconfigurable device.

Implementation of the FScript compiler. Our FScript compiler without synchronization
works on the ADL description used to instantiate the target system, this is sufficient, as
FScript semantics are defined exclusively in terms of FRACTAL architecture elements
captured by the ADL. The FScript compiler generates the C implementation of a recon-
figuration component.

Along with the new instances, the reconfiguration component is compiled as a relo-
catable THINK-based component with our THINK ADL compiler to produce an ELF3

file ready to be sent to the target platform.

3 The use of the ELF format is motivated by the availability of associated code and tools.

www.manaraa.com

Experience with Safe Dynamic Reconfigurations 251

The target operating system provides a minimal run-time for executing reconfigura-
tion components:

– FScript helper functions In order to minimize the transferred reconfiguration C
code, some often used functions are provided by the run-time.

– loader and linker The linker functionalities are restrained to be capable of only
loading the reconfiguration ELF file. It performs some symbol relocation and re-
solves references to the FScript helper functions, together with some standard func-
tions (symbols), like printf.

– introspection component In the generated C code, the real component locations are
not resolved. The resolution is done at run-time by the introspection component,
using the introspection capabilities of FRACTAL architectures already available in
the operating system.

Implementation results. Table 1 shows the sizes of the necessary components to build
a run-time support for the binary reconfiguration code compiled from FScript. We sep-
arate the code size (text section) from the data size (data and bss section). On
architecture like the AVR, the code is copied into the flash memory, whereas the data
into the main memory. The data comprises C compiler allocated structures, like global
variables, especially it doesn’t give any information on stack or heap usage. As already
stated, the linker has only minimal functionalities to satisfy the linking of the reconfig-
uration component.

Table 1. Sizes of the FScript run-time

code size data size
Introspection 2.7kb 100b

Loader and linker 4.9kb 300b

FScript helper 1.3kb 0b

Total run-time support 8.9kb 400b

Table 2. FScript offline compiler and a native in-
terpreter (reconfiguration of the alloc comp.)

compiler interpreter
Transf. data type ELF FScript
Transf. data size 4.5kb 270b

FScript run-time 8.9kb/0.4kb n.a.

In the table 3 we evaluated the size of the ELF file of the reconfiguration component.
The functional content of the ELF file, i.e. reconfiguration code and new components,
is about half of the file size. In the ELF header we find a symbol table, a string table and
two relocation tables (code and data sections). The space occupied by the relocation
tables are minimized due to the inlined nature of the THINK component structures we
generated, the symbol and string tables occupy almost the rest of the header. The sizes
of these table entries are directly related to the C symbol names (variables, functions
etc.) and to the structure of the C code of the new components and of the generated C
structures. The size is proportional to the amount of components in the file.

Table 2 summarizes the characteristics of the offline compilation approach and com-
pares it to what we could expect from a native interpreter (we didn’t implement). We
are interested in comparing the amounts of data transferred to the reconfigurable de-
vice and the impact on the memory usage of the FScript support as it determines the
suitability of the approach for constrained devices. The shown sizes are relative to the

www.manaraa.com

252 J. Polakovic et al.

Table 3. Details of the reconfiguration ELF file for the allocator reconfiguration example

Reconfiguration code 1.5kb

The new component (sbrk) 0.5kb

THINK component structures 0.2kb

Total content 2.3kb

ELF header 2kb

strings in the ELF tables ∼ 1kb

Total size of the ELF-file 4.3kb

above described reconfiguration of the alloc component. We postpone the discussion
of these results to the section 5.1.

The reconfigurable THINK-based kernel served for this evaluation occupies 109kb
of code memory and 13kb of data memory. All kernel components are reconfigurable,
the kernel contains an FScript support (helper functions, loader and linker) and a simple
communication stack over the radio line. In the data sections (data and bss) we find
static component data, buffers and component meta-data structures generated by the
THINK ADL compiler (about 1kb).

5 Discussion

5.1 Lessons Learned and Limitations

We found that our approach for providing safe reconfigurations in an operating system
fulfills the goals of flexibility, safety and simplicity. However we didn’t yet achieve the
goals of efficiency and minimality, in order to build an FScript execution support on the
Cognichip target platform.

Flexibility. Using the FRACTAL hierarchical component model allows reconfigurations
to be properly scoped and to take place at different levels of granularity. Changing a
single primitive component or a whole subsystem is done in the same way. Using this
approach we were able to replace a single component, like the allocator, and the whole
application.

Safety. The safety of our reconfigurations is achieved by using the FScript language.
FScript programs are subject to compile time checks that help the reconfiguration pro-
grammer avoid non-trivial errors. The FScript compiler is responsible for analyzing if
the reconfiguration performed results in a valid architecture and it also generates run-
time error-handling code.

Simplicity. Our approach is simple thanks to the use of FRACTAL-based technologies at
every stage of the reconfiguration process. We build reconfigurable operating systems,
using a FRACTAL implementation, we program reconfigurations in a language based
exclusively on elements of a FRACTAL architecture.

Efficiency and Minimality. The actual sizes of a reconfigurable kernel with an FScript
support for an AVR platform may vary from those reported in the previous section (due
to different code compactness and different data sizes). The above results show however

www.manaraa.com

Experience with Safe Dynamic Reconfigurations 253

a lack of the implemented approach – it requires extra memory usage on the target
platform, inadapted for platforms like the Cognichip, with 4kb or 8kb main memory.

Indeed, the size of the ELF header is proportional to the number of components (due
to the nature of the generate meta-data structures for THINK-based components), the
overall size of the transferred file depends on the number of new components and the
reconfiguration code is proportional to the complexity of reconfigurations. Thus, the
processing of the received ELF file requires extra memory usage.

5.2 Perspectives

The above discussed prototype could be improved in several ways.

Optimize generated component structures. The ELF-header overhead is partially due
to the structure of the C code generated by the THINK ADL compiler. For a component
the compiler generates several cross-referenced global symbols. Each reference of such
a symbol requires an entry in the relocation table found in the ELF header. We are
currently experimenting the generation of inlined component structures revoking the
necessity of cross-referenced symbols. This is a more general work on optimizations of
component-based system architectures.

Loader. Our prototype uses a simple loader working on in-RAM copies of the ELF file.
On architectures like the AVR, where the RAM size is limited, we plan to build a more
efficient loader working with the flash memory as temporary storage.

External configuration representation and meta-data. The described implementation of
the FScript interpreter works with an ADL representation of the device’s configuration.
The interpreter generates a code where real component locations are resolved at run-
time. We envisage to include binary meta-data, as effective component locations, to the
configuration representation gathered by the target device prior to reconfiguration. This
would probably lead us to define an alternative binary format for the transmission of
the reconfiguration component.

Offline pre-linking. We are currently working on a prototype implementation of the
FScript compiler without the necessity of a run-time linker. All linking is done on the
compilation host, linking locations are predetermined before the binary reconfiguration
component is sent to the target. The memory usage of this prototype is thus minimal,
this approach has severe limitations in flexibility.

FScript syntax evolution. Our actual FScript compiler checks the conformity of the
usage of the suspend and resume operations for the quiescent state. This check is
complex and we still found cases difficult to detect. Blocks in the FScript language
would be useful to provide syntactically scoping rules to this quiescent state condition.
The FScript compiler could then just insert the suspend and resume operations. A
programmer would write:

Error handling. The reconfiguration code as it is generated by the FScript compiler
contains little error handling assuming that all verifications were performed by the in-
terpreter. We envisage to make this code more robust and evaluate the impact on its size.
A C++ exception mechanism implementation appears to be a promising way to achieve
a proper error handling.

www.manaraa.com

254 J. Polakovic et al.

6 Related Work

Dynamic reconfiguration has been heavily explored in research areas ranging from
programming languages, down to middleware and operating system kernels. In the fol-
lowing, we restrict the analysis to reconfigurable operating systems. We organize our
discussion around two research areas. We discuss first reconfigurable operating sys-
tems, and then operating systems for constrained embedded devices, like networked
sensors.

Reconfigurable operating systems. General-purpose operating systems, such as Linux
or Windows provide limited support for dynamic reconfiguration, typically limited to
certain functionalities, like device drivers. It is possible to load and unload kernel mod-
ules, but for example replacement of a module while in use by the system is not pos-
sible. All such reconfigurations are performed manually and a verification mechanism,
as implemented in this paper, is not available.

Component-based frameworks, such as OSkit [12] or eCos [9], provide a way to
build customized and minimal kernels, based on compile-time selection of components
to be included into the kernel. These systems also provide an architecture description
language (ADL), such as Knit [27], to assist the assembly of the kernel. However, these
systems have no support for dynamic reconfiguration.

Compared to monolithic operating systems, micro-kernels (e.g. L4 [22], or Pebble
[13]) are a step further in providing reconfigurability - a user-level server is the unit
of reconfiguration. However, a micro-kernel itself is not reconfigurable and if recon-
figurability is implemented at the level of user-level servers, the system pays the price
of the time-consuming IPC communication between these servers. An Exokernel ap-
proach [10] allows kernel developers to build systems on top of minimum hardware
abstraction, however it is also up to the kernel developer to implement a reconfiguration
support.

SPIN [2], provides a safe way to extend the kernel, by writing extensions as spindles.
Compared to our approach, SPIN has several limitations. First, an underlying kernel
core itself is not reconfigurable. Second, extensions are only limited to some predefined
parts of the kernel. Third, the interactions between extensions and the kernel are ex-
pensive - an extension is a handler reacting to an event raised by a kernel module. And
finally the safe extension mechanism requires a run-time compiler and verifier, which
makes this approach unsuitable for constrained embedded devices.

In VINO [28], all reconfigurations are handled as transactions, largely using lock-
ing to synchronize the access to kernel modules. As such, transactions offer a basis
for implementing a safe reconfiguration mechanism. The overhead of the transaction
mechanism makes it inadapted to be used in embedded devices with limited resources.
Reconfigurable operating systems including Synthetix [26], MMLite [17] or more re-
cently K42 [1, 29] provide mechanisms for dynamic reconfiguration at a fine grain.
Synthetix and MMLite use read-write locks to synchronize accesses to a reconfigurable
component. K42 supports reconfiguration through a mechanism, which consists in in-
troducing interceptors at run-time, resulting in no run-time overhead. Common to these
systems is the fact that reconfigurations are still hand-written and as such do not allevi-
ate the issues involved in programming safe reconfiguration.

www.manaraa.com

Experience with Safe Dynamic Reconfigurations 255

Operating systems for networked sensors. TinyOS [19, 14], one of the first operating
systems targeting networked sensors, is not reconfigurable, however, several different
approaches exist on top of TinyOS in order to provide application reconfigurability. For
instance XNP [20] allows to download and reinstall a new system image. XNP requires
a reboot of the system and as such doesn’t provide any service guarantee during the
reconfiguration. Mantis [3] allows reconfiguration in the same manner.

FlexCup [23] is another mechanism built on top of TinyOS that provides a dynamic
reconfiguration mechanism, allowing to reconfigure applications at the granularity of
a TinyOS component. The mechanism relies on meta-data, generated during the com-
pilation of the system, and a run-time linking mechanism based on these meta-data.
However with FlexCup, TinyOS applications must be segmented into arbitrary binary
components that can be reconfigured subsequently. Using the THINK approach for re-
configurations, all components found in a kernel are reconfigurable. Also, in a THINK-
based operating systems, components are run-time entities and all necessary meta-data
for retrieving and relinking a component are available through the use of the FRACTAL

reflective component model.
Contiki [8, 7] is a reconfigurable modular operating system for networked sensors.

A Contiki system uses a flat module architecture, a module being the unit of recon-
figuration. Thus Contiki offers only a fixed granularity of reconfigurations, whereas in
a THINK-based system, thanks to the hierarchy offered by the FRACTAL component
model, reconfigurations can involve the whole application implemented by a complex
component, or only its subpart implemented in some primitive component. Technically
the approach shown in this paper is similar to Contiki, however, using a THINK-based
OS with an explicit architecture representation, provides us with a support to verify the
reconfigurations before execution. Contiki defines a non-reconfigurable core, in THINK-
based OS, everything is a component, thus with an appropriate method, everything is
reconfigurable. SOS [16] achieves reconfiguration using loadable modules and is simi-
lar to Contiki.

Maté [21] is a virtual machine (VM) built on top of TinyOS, Maté applications are
written with a limited set of virtual machines instructions. Reconfigurations are per-
formed as replacements of such applications running on top of the virtual machine.
Compared to our approach, Maté achieves a different trade-off between the four goals
of a safe dynamic reconfiguration mechanism. The granularity of reconfigurations in
Maté is coarse (at the applications level), the core of the system, the virtual machine
itself, can’t be reconfigured. The byte-code interepretation in the VM guarantees the
safety of reconfigurations. The radio communication in networked sensors being the
most expensive resource, virtual machines provide energy-efficient update mechanisms,
but VMs are more energy expensive during normal system execution. With respect to
the energy efficiency we achieve a different trade-off with the THINK approach.

7 Conclusion

In this paper we discussed an approach for constructing safe reconfigurations of op-
erating systems by using a reconfiguration DSL, called FScript. Based on a use-case
for intelligent networked objects, we considered four goals for a mechanisms for safe

www.manaraa.com

256 J. Polakovic et al.

reconfigurations – flexibility, efficiency and minimality, safety and simplicity. Our im-
plementation of the FScript offline compiler for an ARM-based platform fulfills the
above goals, however it reveals a prohibitive usage of the memory on the target plat-
form, mainly due to the transfer format of the loadable code, that we will address in our
future work by offline pre-linking the loadable code.

The THINK framework is freely available at http://think.objectweb.org.

References

[1] Baumann, A., Heiser, G., Appavoo, J., DaSilva, D., Krieger, O., Wisniewski, R.W., Kerr,
J.: Providing dynamic update in an operating system. In: Proceedings of the 2005 USENIX
Annual Technical Conference (April 2005)

[2] Bershad, B.N., Savage, S., Pardyak, P., Sirer, E.G., Fiuczynski, M.E., Becker, D., Cham-
bers, C., Eggers, S.: Extensibility safety and performance in the SPIN operating system. In:
Proceedings of the 15th ACM Symposium on Operating Systems Principles, ACM Press,
New York (1995)

[3] Bhatti, S., Carlson, J., Dai, H., Deng, J., Rose, J., Sheth, A., Shucker, B., Gruenwald, C.,
Torgerson, A., Han, R.: MANTIS OS: An Embedded Multithreaded Operating System for
Wireless Micro Sensor Platforms. MONET 10(4) (2005)

[4] Bloom, T., Day, M.: Reconfiguration and module replacement in Argus: Theory and Prac-
tice. IEE Software Engineering Journal 8(2) (1993)

[5] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The Fractal Component
Model and its Support in Java. Software - Practice and Experience 36(11-12) (2006)

[6] David, P.C., Ledoux, T.: Safe Dynamic Reconfigurations of Fractal Architectures with
FScript. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, Springer, Heidelberg (2006)

[7] Dunkels, A., Finne, N., Eriksson, J., Voigt, T.: Run-time dynamic linking for reprogram-
ming wireless sensor networks. In: SenSys 2006. Proc. 4th ACM Conference on Embedded
Networked Sensor Systems, ACM Press, New York (2006)

[8] Dunkels, A., Gronvall, B., Voigt, T.: Contiki - A Lightweight and Flexible Operating Sys-
tem for Tiny Networked Sensors. In: LCN’04. Proc. 29th Annual IEEE Int. Conf. on Local
Computer Networks, IEEE Computer Society Press, Los Alamitos (2004)

[9] eCos. http://sources.redhat.com/ecos.
[10] Engler, D.R., Kaashoek, M.F., O’Toole Jr., J.: Exokernel: an operating system architecture

for application-level resource management. In: Proceedings of the 15th ACM Symposium
on Operating Systems Principles, ACM Press, New York (1995)

[11] Fassino, J.-P., Stefani, J.-B., Lawall, J., Muller, G.: Think: a software framework for
component-based operating system kernels. In: Proceedings of the 2002 USENIX Annual
Technical Conference (2002)

[12] Ford, B., Lepreau, J., Clawson, S., Van Maren, K., Robinson, B., Turner, J.: The Flux OS
Toolkit: Reusable Components for OS Implementation. In: HotOS-VI. 6th Workshop on
Hot Topics in Operating Systems (1997)

[13] Gabber, E., Small, C., Bruno, J., Brustoloni, J., Silberschatz, A.: The Pebble Component-
Based Operating System. In: Proc. of the USENIX Annual Technical Conference (1999)

[14] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC language:
A holistic approach to networked embedded systems. In: Proc. ACM PLDI, ACM Press,
New York (2003)

[15] Germain, F., Ghozzi, M., Laval, J.-P., Jarboui, T., Marx, F.: The Cognichip: a flexible,
lightweight spectrum monitor. In: COGnitive systems with Interactive Sensors (2006)

http://sources.redhat.com/ecos.

www.manaraa.com

Experience with Safe Dynamic Reconfigurations 257

[16] Han, C.-C., Kumar, R., Shea, R., Kohler, E., Srivastava, M.: A dynamic operating system
for sensor nodes. In: MobiSys. Proc. 3rd Int. Conf. on Mobile systems, applications, and
services (2005)

[17] Helander, J., Forin, A.: MMLite: a highly componentized system architecture. In: Proc. 8th
ACM SIGOPS workshop on Support for composing distributed applications, ACM Press,
New York (1998)

[18] Hicks, M.W., Nettles, S.: Dynamic software updating. ACM Transactions on Programming
Languages and Systems (TOPLAS) 27(6) (2005)

[19] Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture direc-
tions for networked sensors. In: Proc. 9th ASPLOS (2000)

[20] Jeong, J., Kim, S., Broad, A.: Network reprogramming. TinyOS documentation (2003)
http://www.tinyos.net/tinyos-1.x/doc/ NetworkReprogramming.
pdf

[21] Levis, P., Culler, D.: Maté: A tiny virtual machine for sensor networks. In: Proc. 10th AS-
PLOS (2002)

[22] Liedtke, J.: On micro-kernel construction. In: Proceedings of the 15th ACM Symposium
on Operating Systems Principles, December 1995, ACM Press, New York (1995)

[23] Marrón, P.J., Gauger, M., Lachenmann, A., Minder, D., Saukh, O., Rothermel, K.: FlexCup:
A Flexible and Efficient Code Update Mechanism for Sensor Networks. In: Römer, K.,
Karl, H., Mattern, F. (eds.) EWSN 2006. LNCS, vol. 3868, Springer, Heidelberg (2006)

[24] Mitola, J.: Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio.
PhD thesis, Royal Institute of Technology (KTH) (2000)

[25] Polakovic, J., Ozcan, A.E., Stefani, J.-B.: Building reconfigurable component-based OS
with THINK. In: 32nd Euromicro Conf. on Soft. Eng. and Advanced Applications (SEAA),
CBSE Track (2006)

[26] Pu, C., Autrey, T., Black, A.P., Consel, C., Cowan, C., Inouye, J., Kethana, L., Walpole,
J., Zhang, K.: Optimistic incremental specialization: Streamlining a commercial operating
system. In: Proc. of the 15th ACM Symposium on Operating System Principles, ACM
Press, New York (1995)

[27] Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E.: Knit: Component Composition for
Systems Software. In: OSDI. Proceedings of the 4th USENIX Symposium on Operating
Systems Design and Implementation (2000)

[28] Seltzer, M.I., Endo, Y., Small, C., Smith, K.A.: Dealing with disaster: Surviving misbe-
haved kernel extensions. In: OSDI. Proceedings of the 2nd USENIX Symposium on Oper-
ating Systems Design and Implementation (1996)

[29] Soules, C.A.N., Appavoo, J., Hui, K., Wisniewski, R.W., Da Silva, D., Ganger, G.R.,
Krieger, O., Stumm, M., Auslander, M., Ostrowski, M., Rosenburg, B., Xenidis, J.: Sys-
tem support for online reconfiguration. In: Proc. of the 2003 USENIX Annual Technical
Conf. (2003)

[30] van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated bibliogra-
phy. SIGPLAN Notices 35(6) (2000)

[31] World Wide Web Consortium. XML path language (xpath) version 1.0. W3C Recommen-
dation (November 1999) http://www.w3.org/TR/xpath

http://www.tinyos.net/tinyos-1.x/doc/ NetworkReprogramming.pdf
http://www.tinyos.net/tinyos-1.x/doc/ NetworkReprogramming.pdf
http://www.w3.org/TR/xpath

www.manaraa.com

A Framework for Contract-Based Collaborative

Verification and Validation of Web Services

Xiaoying Bai1, Yongbo Wang1, Guilan Dai2,
Wei-Tek Tsai3, and Yinong Chen3

1 Department on Computer Science and Technology, Tsinghua University, China
baixy@tsinghua.edu.cn, wang-yb04@mails.tsinghua.edu.cn

2 Research Institute of Information Technology, Tsinghua University, China
daigl@tsinghua.edu.cn

3 Computer Science and Engineering Department, Arizona State University, USA
{wtsai,yinong}@asu.edu

Abstract. A key issue with Web Services (WS) is the verification and
validation (V&V) of services to build trust between service providers and
service users. This paper proposed a test-broker architecture so that all
stakeholder within WS can contribute to improve the testing of the ser-
vices. The test broker supports the submission, indexing, and querying
of test artifacts such as test cases, defect reports and evaluations. It can
also provide the services for the test generation, test coordination, and
distributed testing services. The DCV&V (Decentralized, Collaborative,
Verification and Validation) framework is proposed with a set of dis-
tributed and collaborated test brokers dedicated to different V&V tasks
to enable scalable and flexible test collaborations. The paper explores
the concept of design-by-contract and applies the principle to DCV&V.
It identifies two categories of testing contracts including TSC (Testing
Service Contracts) and TCC (Test Collaboration Contracts). It illus-
trates the application of TSC with contract-based test generation based
on WS OWL-S specification. It elaborates TCC with the analysis of the
test artifacts definitions.

Keywords: Web Services, Contract-Based, Verification and Validation.

1 Introduction

As a new computing paradigm, Service-Oriented Architecture (SOA) and its
implementation Web Services (WS) are redefining the entire process of software
development and new techniques are needed to support the new process. For
example, new techniques are needed to ensure the trustworthiness of SOA and
WS based software, as Bloomberg pointed out in 2002 that the success of WS
depends on its capability to resolve the testing issues [6].

Standard-based dynamic collaboration is a key feature of WS systems. The
generic WS architecture defines a loosely-coupled contract-based collaboration
model among service providers, service brokers and service requesters for ser-
vice publishing, discovery, and binding [21]. A service is an executable software

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 258–273, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Contract-Based Collaborative Verification and Validation of WS 259

component that resides on the service provider’s server and remotely delivers
results to the service requester or application. Service providers publish service
descriptions and register it to a service directory such as a UDDI server. Service
requesters look up the UDDI server, find the services satisfying their require-
ments, and bind to the service interfaces at run time. The cooperation among
distributed partners is enabled by open standard specifications such as SOAP
(Simple Object Access Protocol), WSDL (Web Service Description Language,
UDDI (Universal Description, Discovery, and Integration), etc.

However, many issues exist in the dynamic collaboration model. One of the key
issues is the verification and validation (V&V) of services to build trust between
service providers and service requesters. With current SOA applications, the
UDDI server serves as a service broker. But it only provides directory services
for the service providers to publish services and for the service requesters to
discover services. It is not accountable for the quality, including performance,
dependability, and cost-effectiveness of the services. It will register any services
as long as the identity of the service provider can be verified through the digital
signature or other means.

WS V&V requires participation from all parties involved. Service brokers must
ensure the quality of the services that they publish by performing independent
testing. Service requesters test the services before purchase or use, based on their
usage scenarios. CV&V (Collaborative Verification and Validation) was proposed
to enable that different parties involved can share, exchange, and interoperate
testing artifacts such as test scripts, failure and reliability reports, and ranking
of test scripts, and services, etc. [17].

This paper proposes a decentralized CV&V (DCV&V) framework as an ex-
tension to our previous work on trustworthy UDDI [1] [19]. A test-broker archi-
tecture is introduced to the generic WS architecture. A test broker is a dedicated
WS testing agent that is independent of UDDI capabilities and protocols. It pro-
vides the services for the publishing and discovering of test artifacts, and enables
all the stakeholder in WS testing to flexibly communicate and cooperate. Test
brokers that are distributed located can collaborate with each other that are
dedicated to different CV&V tasks and focus on different problems.

Contracts are the basis for the mutual understanding among test collab-
orators. The paper identifies DCV&V contracts from two perspectives: TSC
(Testing Service Contracts) and TCC (Test Collaboration Contracts). TSC is
the communication between testing components and the SUT (service under
test), including test generation and test exercising. The paper applies OWL-
S service specification to illustrate contract-based test generation. Test cases
are generated based on OWL-S process specification. The paper also discusses
constraints-guided test generation. In addition to the data constraints and pro-
cess pre-conditions supported by current WS specifications, the paper proposes
intra-process constraints as a supplementary to process specifications. The con-
straints provide important information for negative test case generation.

TCC defines the way that testing components collaboratively design test cases,
execute test plan, and evaluate test results.The paper identifies the key testing

www.manaraa.com

260 X. Bai et al.

artifacts and their relationships in the TCC model and discusses how these
artifacts can be exchanged among testing components.

The rest of the paper is organized as follows. Section 2 reviews related re-
search, including WS CV&V and contract-based testing. Section 3 introduces
the DCV&V architecture. Section 4 describes the definition of DCV&V con-
tracts. Sections 5 discusses the contract-based test generation. Finally section 6
summarizes and concludes the paper.

2 Related Work

2.1 WS CV and V

WS V&V is gaining more and more attentions from research as well as industry
[6][9][10][12][13] [15][16][20]. Most of the current studies have been focused on
the formal verification of WS specifications. For examples, Shin proposed to
use the automation-based model checker SPIN [15]; Howard et al. applied FSP
(Finite State Process) notation [12]; and Srini and Sheila adopted DAML-S
ontology to describe web service semantics and translated it into a Petri-net
specification [16].

Tsai et al. proposed CV&V (collaborative verification and validation) and
the WebStrar framework for testing services and service-based applications
[18][17][19]. They analyzed the challenges of dynamic and just-in-time testing
of SOA and proposed the CV&V model which is characterized by the collabora-
tion and cooperation of all the parties involved in SOA to perform WS testing
to ensure trustworthy computing. CV&V extends current WS architecture with
testing capabilities.

In our previous work, the trustworthy service broker is proposed as an exten-
sion to UDDI server by adding just-in-time WS testing, evaluation, and ranking
capacities [1][19]. A trustworthy UDDI maintains not only the service indexes,
but also the service test repository. It can support test case submission from
different parties, service testing before service registration and service checking
out, service evaluation based on testing history results. The enhanced UDDI
enforces quality control over the service lifecycle management.

This research is based on our previous work on CV&V [1][3][2][17]. Testing is
dedicated to independent test brokers, which is independent on current UDDI
capabilities and protocols. The test brokers provide testing services for all parties
involved in WS. They collaborate with UDDI service brokers to enforce testing as
a vital part to the service registration, discovery, and binding process. This paper
introduces the design of the data structure, testing services, and collaboration
contracts of the test brokers.

2.2 Contract-Based Testing

The concept of Design by Contract is widely used in object-oriented (OO) and
component-based software development. A contract is a formal agreement be-
tween two cooperating components. In a client-server system, it specifies the

www.manaraa.com

Contract-Based Collaborative Verification and Validation of WS 261

interfaces provided by the server and the way for the client to access the oper-
ation. In OO and component-based appraoches, a contract is typically defined
by assertions and associated concepts such as pre-conditions, post-conditions,
and various constraints. The assertions are usually incorporated in the code
and can be evaluated at runtime. A violation of the contract may indicate a
bug.

The application of the design-by-contract concepts to software testing has
been investigated. Most of current studies focus on test generation based on
code assertions. Korat generated valid and non-isomorphic inputs and evaluate
output correctness for Java programs based on JML assertions [5]. Karl Meinke
viewed testing as a constraint solving or satisfiability problem and modeled the
functional correctness of the systems using preconditions and post-conditions
[14]. Briand showed that precisely defined contracts can considerably improve
diagnosability (about 8 times) [7]. They also developed a classification of asser-
tions and proposed a method of programming with assertions.

Contract-based WS testing has also been addressed. In WS, services ex-
change data and collaborate in a workflow via XML-based standard specifi-
cations. Hence, contracts in SOA have different representations beyond classical
implementation-level. Heckel and Lohmann analyzed the three levels of WS con-
tracts representation [13]: At the implementation-level using Boolean expressions
of programming language, the XML-level of WS specifications, and the model-
level to visualize contracts in graphs. They proposed graph transformation rules
to visualize contracts which are also useful for simulation testing of the tar-
get services. Marcello Bruno et al. proposed that test cases can be used as the
contract between service providers and service requesters [8].

This research identifies the DCV&V contracts at the specification level fol-
lowing the WS standard-based approach. The contracts are classified into two
categories: one for the cooperation among testers and service participants (TSC),
and the other for the cooperation among test participants (TCC). TSC enables
automatic test generation based on WS specifications and test execution on the
services under test. With TSC, it can incorporate testing into the generic SOA
process. TCC allows the test participants to exchange testing data and knowl-
edge including test plans, test cases, test scenarios, test results, defects, and
reliability data.

The paper also discusses the unique problems of contract-based WS test gen-
eration based on OWL-S specification. In addition to the code-level assertions,
it analyzes the constraints in WS specifications and proposed constraints at the
intra-process level.

3 Decentralized CV and V Architecture

3.1 The Test Broker Architecture

The test broker enables the test collaboration among different parties partici-
pating WS testing. A test provider provides test knowledge such as test cases,
executable test scripts, test results, defects, test rank, services rank, test/service

www.manaraa.com

262 X. Bai et al.

evaluation models based on testing statistics, etc. A tester carries the published
test cases and simulates testing on the target services. Both test providers and
testers can be anyone including service providers, service users, or third party
independent test participants. Particularly,

1. A test provider can be
(a) the service provider who submits the service test specification together

with the services;
(b) the service requester who uses and evaluates the services for specific

application domain; and
(c) any independent tester who develops test cases based on the published

service specifications.
2. A tester can be

(a) the service provider who checks out the published test cases for testing
its provided services;

(b) the service requester who uses the test cases to validate the services to
be selected;

(c) the service broker who ensures that the service submitted is good enough
for publication and registration;

(d) an organization who issues quality certifications for services in specific
domain; and

(e) any independent testers who are interested in providing ranking and
evaluation information for the public.

Figure 1 depicts the collaboration activities among different parties

Fig. 1. The test broker architecture

1. A test provider submits test artifacts and publishes through the test broker.
2. A tester checks the test broker and searches for the test cases.
3. The tester gets the test case description, executable test scripts or linkage

to the test services provided by the test provider.
4. In case the test cases can not be executed by the tester independently, the

tester establishes the collaboration with the test provider.

www.manaraa.com

Contract-Based Collaborative Verification and Validation of WS 263

5. The tester broker maintains the mapping between a test case and its target
service under test.

6. The tester finds the services from service broker with the service reference
associated with the test case.

7. The tester binds testing to the service located at the provider, tests the
service and gets test results.

8. The tester submits the test results / bug reports to the test broker for further
service evaluation.

9. The testing process can be integrated into the service publication process.
The service broker can collaborate with the test broker for check-in / check-
out testing so that only the services that satisfy the quality criteria can be
published and returned to the users.

10. The testing process can also be integrated into the service discovery process.
The service user can refer to the testing results and evaluation of services
provided by the test broker as the basis for service selection.

3.2 Test Broker Data Structure and Services

Figure 2 shows the data structure of the test broker architecture. TestEntity
represents the provider of the test cases. TestCase represents the published test
cases which could be a specification or an executable script. The TestModel
represents the technical interface of a test case. The TestBinding represents
the binding from TestModel specification to the test provider. ServiceLinking
specifies the corresponding tModel of the service under test.

Fig. 2. The test broker data structure

The test broker maintains a test repository of test cases and test scripts,
test results submission, defects report, and test/service evaluations. It supports
the registration, publication, indexing and searching of test artifacts. It can also
facilitate test generation and execution. Figure 3 shows the services a test broker
provides.

www.manaraa.com

264 X. Bai et al.

Fig. 3. The test broker services

3.3 Decentralized Test Brokers

There may exist multiple test brokers in the internet environment. A decen-
tralized architecture (DCV&V) is established with a set of brokers dedicated
to different V&V tasks to enable scalable and flexible collaborations among test
participants. In DCV&V, a broker can be focused on a dedicated task for a small
scale services. For example, a group can categorize test brokers into different
domains. A test broker for banking services can accumulate sophisticated bank-
ing test cases, and define effective criteria for evaluating and ranking banking
services.

DCV&V also enables a broker to flexibly join or quit the collaboration. The
brokers are loosely coupled based on standard protocols. They keep the references
to others and establish collaboration at runtime through negotiation. DCV&V
provides an extensible architecture for testing collaboration.

4 DCV and V Contracts

To facilitate DCV&V, contracts are necessary for all the participants to commu-
nicate and cooperate in a mutually understood and agreed manner. Contracts
are not only used among service providers and service requesters, but also among
test participants. We classify the contracts into three categories based on the role
of the contract.

1. TSC (Testing Service Contracts) defines the way test designer to get service
specification for test case generation, test executors to exercise the test case
on the service interface, and test evaluators to evaluate the services based
on test results and defect reports.

www.manaraa.com

Contract-Based Collaborative Verification and Validation of WS 265

2. TCC (Test Collaboration Contracts) defines the protocols for collaborative
test design, execution and evaluation. DCV&V provides an open platform
for WS testing in a democracy approach that anyone can participate in WS
testing. Everyone can contribute from different aspects such as providing
test cases, reporting defects, ranking service performance, etc.

The objective of the framework is to enable that

1. test providers can design the test case based on service specifications, and
exchange test design with others;

2. testers can exercise the test cases on the target services and submit and
publish the results for evaluation. Different test runs may be synchronized
in a test plan;

3. different parties can exchange their data and knowledge of services and
service testing, including service interface, service composition model, test
cases, test plan, test results, defects and evaluation.

4.1 Testing Service Contract

4.2 Test Collaboration Contract

Test collaboration contracts can synchronize the behavior of test participants
and facilitate the coordination of testing activities. Figure 4 identifies the key
test artifacts abstracted in the collaboration contracts.

Fig. 4. The test collaboration contract

Test case is basis of collaboration contract. A test case specifies the pre-
condition, post- condition, input data and actions, target services and operations.
It is the basic unit for test execution.

www.manaraa.com

266 X. Bai et al.

Definition 1. Test Case. TC :=< id, SUT, PreCond, PostCond, IN, OUT >,
where

1. id is the unique identifier of the test case;
2. SUT :=< s id, op id > is the target service under test where s id is the

identifier of the service, and op id is of the service operation;
3. PreCond := {assert} is a set of assertions to ensure the prerequisites of

exercising the test case are satisfied;
4. PostCond = {assert} is a set of assertions to evaluate the correctness of

execution results;
5. IN = {< name, value >} specifies the name and value of input parameters

to the operation; and
6. OUT = {< name, value >} specifies the name and value of the outputs of

the operation.

Test cases can be organized into a structure for testing at a larger granularity.
A test scenario is a composition of test cases. It defines a process over a set of
test cases for validating system behavior with complex usage scenarios.

Definition 2. Test Scenario. TS :=< id, < ctl, TC > >, where

1. id is the unique identifier of the test scenario;
2. ctl is the control of the execution order such as sequence, parallel,branch,

etc.; and
3. TC = {tc} is the set of test cases composed in the test scenario.

A test plan is an organization of test executions. It establishes the framework
for a specific testing purpose by identifying the objective, focus, strategy, and
evaluation criteria. A test plan organizes a set of test runs. Each test run repre-
sents an execution of a set of test cases or test scenarios. Each test case/scenario
can be exercised in multiple test runs.

Definition 3. Test Plan. TP lan :=< id, desc, {< TRun, Deploy >} >, where

1. id is the unique identifier of the test plan;
2. desc is the description of the test plan such as purpose and strategy;
3. TRun =< id, {tcs} > is the test run where id the run identifier and tcs is

the test case/scenario exercised in the test run; and
4. Deploy =< host, load > defines the host computer to exercise the test run

and the load for the testing.

A test result records the pass/fail result of each test case/scenario in each test
run. A failed test will be traced to its defect report. A defect records in details
the phenomenon and the characteristics of a failed test. Reliability of the services
under test is analyzed based on test results and defect reports.

www.manaraa.com

Contract-Based Collaborative Verification and Validation of WS 267

Definition 4. Test Result. TResult :=< id, run id, {< tcs, pf, Defect >} >,
where

1. id is the unique identifies of a test result;
2. run id is the reference to the test run;
3. tcs is reference to the test case/scenario in the test run;
4. pf is the pass/fail result record; and
5. Defect =< id, desc > is a description of a defect if pf is failed.

Following the of SOA standards, testing contracts can also be encoded in stan-
dard XML messages and exchanged among test participants.

5 Contract-Based Test Generation

The WS specification stack models service behavior and interoperation from
various perspectives. WSDL describes the interface of individual services as a
set of operations on messages. Process specifications such as BPEL (Business
Process Execution Language) and WSFL (Web Services Flow Language) models
service composition as a workflow, which defines the relationship and invocation
order among services. Semantic specification like OWL-S introduces Ontology
into service representation to improve the mutual comprehension of the operation
semantics.

Based on the specifications, tests are generated at different levels, including
the test data, test steps, test process for a test case and composite test cases.
Test data are generated based on the analysis of XML schema data types of the
interface specification. Test steps are generated based on the service operations.
Test oracles are generated based on the output and post-condition specifications.
Test processes are generated based on service process.

In this research, we use the OWL-S specification to illustrate the generation
method.The ServiceModel of OWL-S is modeled as a workflow of processes, in-
cluding atomic, simple and composite processes. The main process for compo-
sition of Web services is a composite process. Each composite process holds a
Control Construct which is one of the following: Sequence, Split, Split-Join, Any-
Order, Iterate, If-Then-Else, and Choice. An atomic process is a black-box which
represents the service with IOPE (Input, Output, Precondition, Effect) features.

Based on the OWL-S specification, test cases are generated from two perspec-
tives: test process generation based on the Petri-Net behavior analysis; and test
data generation based on ontology reasoning.

5.1 The Example Hotel Booking System

In this section, we use an example of service-oriented ”hotel booking” to illus-
trate the proposed approach. Suppose that a hotel provides a three-step booking
service including:

1. GetAvailableRoom: to check the list of rooms available for reservation in a
specified hotel.

www.manaraa.com

268 X. Bai et al.

2. SelectRoom: to select a room for reservation from the list of available rooms.
3. BookRoom: to submit the booking information of the selected room.

A customer first checks the rooms available in the hotel via GetAvailableRoom
operation. He/She then selects a room with the preferred price or location by
invocating SelectRoom operation. Lastly, he/she can book the selected room via
BookRoom operation. Suppose GetAvailableRoom has an input as hotel ID and
returns available room list, a list of rooms that are available. SelectRoom has
an input as select room ID and returns the confirmed room ID. BookRoom has
an input as book room ID.

Following gives the OWL-S specification of the example hotel-booking system.

<process:ControlConstructList rdf:ID="CCL_SelectRoom">
<list:first rdf:resource="#Perform_SelectRoom"/>
<list:rest>

<process:ControlConstructList rdf:ID="CCL_BookRoom">
<list:first red:resource="#Perform_BookRoom"/>
<list:rest rdf:resource="http://www.daml.org/services/
owl-s/1.1/generic/ObjectList.owl#nil"/>

</process:ControlConstructList>
</list:rest>

</process:ControlConstructList>
<process:ControlConstructList rdf:ID="CCL_BookRoom">

<list:first rdf:resource="#Perform_GetAvailableRoom"/>
<list:rest rdf:resource="#CCL_SelectRoom"/>

</process:ControlConstructList>
<process:CompositeProcess rdf:ID="CompositeProcess_BookRoom">

<process:composedOf>
<process:Sequence rdf:ID="Sequence_BookRoom">

<process:components rdf:resource="#CCL_BookRoom"/>
</process:Sequence>

</process:composedOf>
</process:CompositeProcess>

5.2 Test Process Generation Based on Petri-Net

Test process is generated to cover various execution paths defined in an OWL-S
composite process. We use the Petri-Net model to represent the OWL-S process
and verify and validate the service process based on its Petri-Net model analysis.

Petri-Net is a graphical and mathematical model which provides a uniform
environment for modeling and formal analysis. It can facilitate the description
and study of the information processing systems that are characterized as being
concurrent and distributed. Petri-Net model has a strong capability to model
events and states in a distributed system and to capture sequential, concurrency
and event-based control.

The processes organized by OWL-S control constructs are mapped to the
Petri-Net by analyzing their execution semantics, the Perform actions, and the

www.manaraa.com

Contract-Based Collaborative Verification and Validation of WS 269

IOPE of each Perform. A Perform is represented by a transition in the net. Its
inputs and preconditions are mapped to the places holding tokens pointing to
the transition that must be valid in order to enable the transition. The Perform
output and effects are mapped to output arcs and places of the transition that
will be triggered after the occurrence of the Perform transition.

Taking the hotel booking example, Figure 5 gives the corresponding Petri-
Net model of its sequence construct. The three services GetAvailable Room,
SelectRoom and BookRoom are mapped to three transitions T1, T2 and T3
respectively. Places P1, P2 and P3 respectively represent the partial states before
activating the transitions.

Fig. 5. The Petri-Net of the example

Based on the Petri-Net topology, test processes are generated by traversing
the paths in the diagram. The key to test process generation is the control
type analysis. Based on the operational semantics of the construct, sets of test
cases are generated to cover branches and to manage the concurrency of vari-
ous branches. For example, for splitting construct, test cases are generated to
cover each branch in the split and enable the concurrent execution of multiple
branches. While for choice construct, each branch will be covered by a test case
separately. A set of test cases are designed to ensure each branch will be exer-
cised at least once. For example, to test the hotel booking system, test cases are
generated with three steps in the same sequence as the booking service: test Get
AvaliableRoom, test Select Room, and test Book Room. Following gives the al-
gorithm for test process generation based on the Petri-net model.

Algorithm: WS test process generation
Input: The OWL-S Petri-Net
Output: Test cases for WS testing

GenTest (OWLPetriNet wpn)
Get the transition trans from the Petri-Net;
If (trans is the end of a Control Construct) return;
If (trans is a Perform){
Analyze precondition, postcondition;
Analyze the input, output of WS;
Generate test data for the Perform;
Generate one test step;
Fire transition;

}

www.manaraa.com

270 X. Bai et al.

else if (trans is the begin of a Control Construct) {
Get the control type;
Process the control type;
Remove all nodes in the control construct;

}
Remove the transition from the Petri-Net;

end GenTest

5.3 Constraint-Guided Test Generation

Constraints are the restrictions on a data or process. They distinguish valid
from invalid inputs and operations. Hence constraints analysis is important for
generating negative, as well as positive, test cases. In current WS specifications,
constraints can be specified from three aspects:

1. WSDL defines operation data based on XML schema which defines con-
straints of the input data for each operation; and

2. OWL-S defines the pre- and post- conditions for each atomic process which
specify the data dependencies among sub-processes within a composite
service.

3. We define the process constraints to specify the intra-process restrictions in
a composite service.

This section illustrates how the existing constraints can be applied to improve
test generation intelligence. In addition, this paper also introduces the intra-
process constraints specification as a complementary to OWL-S.

Data Constraints. In the XML standard, each simple type is associated with
a set of facets which characterize the particular aspects of a data type. Facets
are of two types: fundamental facets semantically abstract the data type, such as
equal, ordered, bounded, cardinality, and constraining; non-fundamental facets
are used to restrict the data values, such as length, pattern, enumeration, etc.

A data can be constrained from multiple facets. Restriction and value con-
straints on the data provide the basis for generating test data. When parsing
the WSDL file, the analyzer will extract the data, create instances of their corre-
sponding data type, obtain and record the facet values with the data instances.

In this research, each facet is linked to a facet data generator. Test generator
coordinates the facets generators and composes the result data. For example,
suppose an input message ”hotel room ID” of type ”string” has following con-
straints: {length = ”5”, pattern = ”[A − Z]{2}[0 − 9]{3}”}. That is, the ”ho-
tel room ID” is of 5 characters long with 2 choosing from A to Z and 3 from
0 to 9. The test generator then generates a set of sample data for testing as
below:

1. To generate valid data: patternGen() randomly select 2 characters from A,
B, ,Z and 3 numbers in sequence.

2. To generate invalid data: patternGen() randomly select 2 characters outside
A, B, ,Z and 3 number in sequence.

www.manaraa.com

Contract-Based Collaborative Verification and Validation of WS 271

3. To generate invalid data: patternGen() randomly select m characters from
A, B, ,Z and n number, where m+n=5 but not follow the pattern.

4. To generate invalid data: lenGen() randomly generates a string length n¡¿5,
and patternGen() randomly generate n characters in sequence.

Suppose a data type is defined as < t, {fi, {ti}} > where t is the type of the
data, fi is a facet, and ti is a constraint value of facet fi for t. Following gives the
algorithm for generating the data for the data.

Algorithm: Generate test data based on constraints

GenTestData (SDTSpec spec) {
//Get data type t, and create an instance of t
test_data = newTestData(t);
// Get the generator for generating
// facet generator of data type t;
dt_gen = genFacetGen (t);
For each fi do

// Generate the facet generator
f_gen = dt_gen.genFacet (fi);
For each ti do

// Generate the test data
test_data.addValues (f_gen.genData (ti));

End // for ti
End // for fi

End GenTestData

OWL-S Preconditions. OWL-S supports pre-condition specification for each
atomic process. A precondition is usually specified using Boolean expression. It
identifies the restriction on the input data to the process in the context of the
composite process. The methods for test generation based on Boolean expres-
sions have been widely discusses.

An important aspect of test generation is to simulate abnormal inputs to
test the system’s robustness and exceptional handling capabilities. Based on the
OWL-S precondition specification, it can effectively generate positive as well as
negative test cases. Following is an example of precondition definition where the
room id of to book must be the same as the selected room. Test cases generated
from two aspects: book room ID equals select room ID and book room ID not
equals select room ID.

<process:inCondition>
<expr:KIF-Condition>

<expr:expressionBody>
(= (?book_room_ID ?select_room_ID))

</expr:expressionBody>
</expr:KIF-Condition>

</process:inCondition>

www.manaraa.com

272 X. Bai et al.

Process Constraints. There also exist constraints among the sub- processes in
a composite process such as the timing constraints. For example, after a customer
submits the booking request, he needs to wait for 0.3-0.5 second for the database
to update status of hotel rooms. If he checks the status before 0.3 second, he
may not see the refresh of the database. However, a delay longer than 0.5 second
is not durable for the customer.

Such intra-process constraints are also important testing points. In this re-
search, we define the constraint specification as a supplementary to OWL-S and
generate test cases based on the constraints.

Definition 5. Process Constraints. A process constraint is defined as a five-
tuple. ProcCons :=< category, type, FV, PreProc, PostProc > Where,

1. category is the classification of a constraint, such as timing constraint, de-
pendency constraint;

2. type is the specific constraint type within a category such as delay, interval
for timing constraint;

3. FV := {< faceti, valuei >} defined the multiple facet values for the con-
straint. For example, the maximum and minimum value for a interval;

4. PreProc := {pi} is the set of processes executed before the constraint; and
5. PostProc := {pi} is the set of processes executed after the constraint.

6 Conclusion and Future Work

The paper presents an on-going research on collaborative WS testing. Even
though WS trustworthiness is gaining more and more attentions, WS testing
is still a challenging topic due to the unique characteristics of WS. Traditional
testing techniques are no longer valid to deal with dynamic collaboration and
runtime composition. Our research aims at establishing a new testing approach
to address the challenges. The paper reports our first attempts in this direction.
The framework proposed in the paper is now under prototype implementation.
More research, experiments, and implementation are necessary for our future
work to evaluate and improve the proposed approach.

Acknowledgments. This research is supported National Science Foundation
China (No. 60603035), National High Technology Program 863 (No. 2006AA
01Z157), Beijing Natural Science Foundation (No. 4072014), and IBM SUR
project under the agreement (No. 20063000238).

References

1. Bai, X., Cao, Z., Chen, Y.: Design of a Trustworthy Service Broker and
Dependence-Based Progressive Group Testing. The International Journal of High
Performance Computing and Networking (to appear, 2007)

2. Bai, X., Dai, G., Xu, D., Tsai, W.T.: A Multi-Agent Based Framework for Collab-
orative Testing on Web Services. In: Proc. of WCCIA, pp. 205–210 (2006)

www.manaraa.com

Contract-Based Collaborative Verification and Validation of WS 273

3. Bai, X., Dong, W., Tsai, W.T., Chen, Y.: WSDL-Based Automatic Test Case Gen-
eration for Web Services Testing. In: Proc. of IEEE SOSE05, pp. 207–212 (2005)

4. Bernhard, K.A.: Contract-Based Testing. In: Aichernig, B.K., Maibaum, T.S.E.
(eds.) Formal Methods at the Crossroads. From Panacea to Foundational Support.
LNCS, vol. 2757, pp. 34–48. Springer, Heidelberg (2003)

5. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated Testing Based on Java
Predicates. In: ACM SIGSOFT Software Engineering Notes, vol. 27(4), pp. 123–
133. ACM Press, New York (2002)

6. Bloomberg, J.: Web Services Testing: Beyond SOAP, ZapThink LLC (2002) at
http://www.zapthink.com

7. Briand, L.C., Labiche, Y., Sun, H.: Investigating the Use of Analysis Contracts to
Support Fault Isolation in Object Oriented Code. In: Proceedings of the 2002 ACM
SIGSOFT international symposium on Software testing and analysis, pp. 70–80.
ACM Press, New York (2002)

8. Bruno, M., Canfora, G., et al.: Using Test Cases as Contract to Ensure Service
Compliance across Releases. In: Benatallah, B., Casati, F., Traverso, P. (eds.) IC-
SOC 2005. LNCS, vol. 3826, pp. 87–100. Springer, Heidelberg (2005)

9. Canfora, G., Di Penta, M.: Testing Services and Service-Centric Systems: Chal-
lenges and Opportunities. IT Professional 8(2), 10–17 (2006)

10. Canfora, G.: User-Side Testing of Web Services, keynote address at CSMR (2005)
11. Ciupa, I., Leitner, A.: Automatic Testing Based on Design by Contract. In: Pro-

ceedings of Net.ObjectDays, pp. 545–557 (2005)
12. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Model-based verification of web

service compositions. In: Proc. ASE (2003)
13. Heckel, R., Lohmann, M.: Towards Contract-Based Testing of Web Services. Elec-

tronic Notes in Theoretical Computer Science, vol. 82(6) (2004)
14. Meinke, K.: Automated Black-Box Testing of Functional Correctness UsingFunction

Approximation. In: ISSTA ’04.Proceedings of the 2004ACMSIGSOFT international
symposiumonSoftwaretestingandanalysis,pp.143–153.ACMPress,NewYork(2004)

15. Nakajima, S.: Model-checking verification for reliable web service. In:
Proc.OOPSLA’02 Workshop on Web Services (2002)

16. Narayanan, S., Mcllraith, S.: Simulation, verification and automated composition
of web services. In: Proc. WWW (2002)

17. Tsai, W.T., Paul, R., Yu, L., Saimi, A., Cao, Z.: Scenario-Based Web Service Test-
ing with Distributed Agents. IEICE Transaction on Information and System E86-
D(10), 2130–2144 (2003)

18. Tsai, W.T., Chen, Y., Paul, R., Liao, N., Huang, H.: Cooperative and Group
Tesitng in Verification of Dynamic Composite Web Services. In: Proc. IEEE
COMPSAC, pp. 1–4. IEEE Computer Society Press, Los Alamitos (2001)

19. Tsai, W.T., Paul, R., Cao, Z., Yu, L., Saimi, A., Xiao, B.: Verification of Web
Services Using an Enhanced UDDI Server. In: Proc. of IEEE WORDS, pp. 131–
138. IEEE Computer Society Press, Los Alamitos (2003)

20. Yi, X., Kochut, K.J.: A CP-nets-based Design and Verification Framework for
Web Services Composition. In: Proceedings of the IEEE International Conference
on Web Services, March 2004, pp. 756–760. IEEE Computer Society Press, Los
Alamitos (2004)

21. Web Services Architecture[s], W3C Working Draft (November 14, 2002)
http://www.w3.org/TR/ws-arch/

22. OWL-S, at: http://www.daml.org/services/owl-s
23. XML Schema Part 2: Datatypes (May 2001) http:// www.w3.org/TR/

xmlschema-2/

http://www.zapthink.com
http://www.w3.org/TR/ws-arch/
http://www.daml.org/services/ owl-s
http:// www.w3.org/TR/xmlschema-2/
http:// www.w3.org/TR/xmlschema-2/

www.manaraa.com

Towards Composing Software Components in Both
Design and Deployment Phases

Kung-Kiu Lau, Ling Ling, and Perla Velasco Elizondo

School of Computer Science, The University of Manchester
Manchester M13 9PL, United Kingdom

{kung-kiu,lling,pvelasco}@cs.man.ac.uk

Abstract. In component-based software development, the design of components
should be carried out separately from the deployment of components, in order to
enable composition by independent third-parties. However, current component
models are biased towards either the design phase or the deployment phase. In
this paper, we argue that ideally component models should include both design
and deployment phases, and it should be possible to compose components in
both phases. We also demonstrate a preliminary implementation of composition
in both phases in a component model we have defined.

1 Introduction

In component-based software development (CBD), components should be produced
and used by independent parties. That is, component developers need not be the same
people as component customers such as system developers. This implies that the design
of components is carried out separately from the deployment of components.

In current component models [6,10], components are either objects or architecture
units. These models tend to be heavily biased towards either the design phase or the
deployment phase. In architecture-based models[6,10] like ADLs and UML2.0, com-
ponents are design entities by definition, with or without corresponding binary compo-
nents in the deployment phase. On the other hand, in object-based models[6,10] like
COM, .NET, CCM and Fractal, components are objects that are executable binaries,
and are therefore more deployment phase entities than design phase entities.

In this paper, we argue that ideally component models should include both design
and deployment phases, in order that CBD can meet its objective of building systems
from pre-existing components with maximum reuse and minimum time-to-market. In
particular, it should be possible to compose components in both design and deployment
phases, in an idealised life cycle for components.

We motivate and define the idealised life cycle, based on commonly accepted desider-
ata for CBD. We discuss composition in each phase, and demonstrate a preliminary
implementation of composition in both phases in a component model we have defined.

2 An Idealised Component Life Cycle

The life cycle of components [4] consists of three stages: (i) the design phase, when
components are designed, defined and constructed in source code, and possibly

H.W. Schmidt et al. (Eds.): CBSE 2007, LNCS 4608, pp. 274–282, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

www.manaraa.com

Towards Composing Software Components in Both Design and Deployment Phases 275

compiled into binaries; (ii) the deployment phase, when binaries of components are
deployed into the execution environment; and (iii) the run-time phase, when compo-
nent binaries are instantiated and executed in the running system. Ideally, composition
should be possible in both the design and the deployment phase while the system is
being constructed. Composition means component reuse, and therefore composition
in both phases will maximise it. It also means design flexibility in the sense that the
deployed components, in particular composite components, can be designed, by com-
position in either phase.

deployment phase
component (binary) component

instance
component
design phase

(a) Design (b) Deployment (c) Run−time

RTERepositoryBuilder Assembler

composition operator composition operator

A

B

C

D

BC

B

A
InsA

InsB

InsD

InsBC

A

B

D

BC

C

Fig. 1. An idealised component life cycle

Accordingly, we have defined an idealised component life cycle [11,10], and the
kind of composition meaningful in its phases (Fig. 1). The idealised life is based on
the following commonly accepted desiderata of CBD [2,5,14,12].Firstly, components
should be pre-existing reusable software units, which developers can reuse for differ-
ent applications. This necessitates the use of a repository in the design phase. Secondly,
components should be produced and used by independent parties, i.e. component devel-
opers and system developers. This is important for ensuring that components are truly
reusable by third parties and requires the use of proper tools that can interact with a
repository, in the design and deployment phases. Thirdly, it should be possible to copy
and instantiate components, so that their reuse can be maximised, both in terms of code
reuse and in terms of components’ scope of deployment. Thus, components should be
distinguished from their instances, and therefore differentiate the design and deploy-
ment phases from the run-time phase. Fourthly, components should be composable into
composite components which in turn can be composed with (composite) components
into larger composites (or subsystems), and so on. This requires that composites can be
deposited in and retrieved from a repository.

Design Phase. In the design phase, components have to be constructed, catalogued and
stored in a repository in such a way that they can be retrieved later, as and when needed.
Components in the repository are in source code, or they may have been compiled into
binary.

www.manaraa.com

276 K.-K. Lau, L. Ling, and P.V. Elizondo

Components here should be composed into well-defined composites using suitable
composition operators, ideally supported by a composition theory. It should be also
possible to store composites in, and retrieve them from the repository, and use them for
further composition, like any components.

A builder tool can be used to (i) construct new components, and then deposit them in
the repository, e.g. A in Fig. 1 (a); (ii) retrieve components from the repository, compose
them and deposit them back in the repository, e.g. in Fig. 1 (a), B and C are composed
into a composite BC that is deposited in the repository.

To promote its reuse, components in design phase should be templates that provide
services. They should be normally identified and designed by domain experts as basic
building blocks for the domain in question. They should be generic, rather than system-
specific so that they should be (re)used to build many different applications. Similarly,
composition operators in design phase should be generic composition schemes to coor-
dinate components which can be customised for many different systems.

To support its reuse, a composite should expose a proper interface. This interface
should be generated during the composition process and its content should be deter-
mined according to the semantics of the composition operator involved.

Components in design phase should also include information of the environmental
dependencies or resources needed for its deployment. Composition in design phase
should generate such information for composites. For instance, deployment contracts
[8] could be used to specify this kind of information.

Deployment Phase. Ideally, composition in deployment phase should follow on from,
and thus exploit composition in design phase. That is, as far as possible, the composites
here should be built directly from the (composite) components created in design phase.

In the deployment phase, components have to be retrieved from the repository, and if
necessary compiled to binary code and then composed. The result of deployment phase
composition is a whole system in binary code, and so this is the end result of system
design and implementation. The completed system should be then ready for execution.

As in design phase, composition should be carried out via composition operators.
However, here they should be able to specify detailed coordination between components
as required by the specific application.

An assembler tool can be used to retrieve components from a repository, compile
them into binary code, and then assemble them into a system. For example, in Fig. 1
(b), binaries of A, B, D and BC are retrieved and composed into a system.

Composite components in the deployment phase should have interfaces that allow
them to be instantiated and executed at run-time. These interfaces should be generated
during the composition process.

Composition in deployment phase should be supported by suitable deployment tools,
for example, for checking component compatibility with one another and with the ex-
ecution environment, a tool for checking deployment contracts would be useful. Also
with such tools, it should be possible to deploy a composite in many different systems,
possibly with different execution environments.

Run-time Phase. In the run-time phase the constructed system is instantiated and
executed in the run-time environment, e.g. A, B, D and BC in Fig. 1 (c). Although there

www.manaraa.com

Towards Composing Software Components in Both Design and Deployment Phases 277

is no further composition in this phase, it may be desirable to adapt component instances
or composition operators so as to dynamically re-configure the executable system. We
do not discuss this here, since our focus is on composition.

3 Towards Composition in Both Design and Deployment Phases

We have done some preliminary work to realise composition in both design and deploy-
ment phases. Our work is based on a component model we have defined [7].

In our component model, there are two basic entities: (i) computation units and
(ii) connectors.1 A computation unit performs only computation (by providing a set
of methods) and does not invoke any computation outside itself. There are two kinds of
connectors: (i) invocation connector, which is used to invoke a computation unit; and
(ii) composition connector, which composes components.

Component
Atomic

Composite
Component

Inv

Repository(a) Design Phase Composition (b) Deployment Phase Composition

System

ABDC

Invocation Connector

Computation Unit

Design Phase Composition Connector

Deployment Phase Composition Connector

Retrieve from Repository

Store into Repository

Inv

B

Inv

AB

Inv Inv

AB

Inv Inv

AB

Inv Inv

D

Inv

D

Inv

C

Inv

AB

Inv Inv

D

Inv

ABD

Inv

AB

Inv Inv

ABD

ABD

D

Inv

C

Inv

A

DsC

A B

DsC

A B

DsC

A B

DsC

DsC

A B

DsC

A

DsC

A B

DsC

DsC

DpC

DpC

Fig. 2. (a) Design phase and (b) deployment phase composition in our component model

Components are defined in terms of computation units and connectors. There are
two kinds of components: (i) an atomic component, which consists of a computation
unit with an invocation connector (e.g. A in Fig. 2 (a)); and (ii) a composite component,
which consists of a set of components (atomic or composite) composed by a composi-
tion connector (e.g. AB and ABD in Fig. 2 (a)).

In [9], we have introduced a basic set of composition connectors which encapsulate
the three standard control structures: sequencing, branching and looping.

Composition connectors are defined by a type hierarchy, so that they allow hierarchi-
cal component composition. Every (composite) component has one top-level connec-
tor, which is either an invocation connector (for an atomic component) or a composition

1 They are exogenous connectors [9].

www.manaraa.com

278 K.-K. Lau, L. Ling, and P.V. Elizondo

connector (for a composite component). This connector represents the only access point
to the component, and also its interface for further composition.

The semantics of components and composition operators in our component model is
such that composition can take place in both the design and deployment phase. Fig. 2
illustrates this, in a direct comparison to the idealised life cycle.

In the design phase (Fig. 2 (a)), the composite AB is built from atomics A and B by the
design phase composition connector, and in turn it can be further composed with atomic
D by having its top-level connector connected by another composition connector, to
build up the composite ABD which is deposited back into the repository.

In the deployment phase (Fig. 2 (b)), the composite ABD is retrieved form the repos-
itory and composed via a deployment phase composition connector with component D
to yield system ABDC. If required, further composition can be done. At the end of the
composition process, the final system should be ready to execute in the target execution
environment.

3.1 Preliminary Implementation

In our preliminary work, we have implemented composition connectors in both design
and deployment phases, but not full-blown tools for the builder, repository or assembler.
Neither have we incorporated deployment contracts in the design phase, or implemented
deployment tools for deployment phase. Our implementation is in Java, and we have
also assumed a simple execution environment throughout, namely JVM.

Design Phase. A software component is implemented in source code by a set of classes
(Fig. 3) in design phase. We define a type Component in a Java interface. For each com-
ponent, there is a class that implements the Component interface, and it keeps a refer-
ence to a Connector type as the top connector. The super class Connector is extended
by The Invocation connector class and composition connector classes such as Pipe,
Sequencer which are used to construct atomic or composite components respectively.

Component implementation
Invocation

+ compose() {... }
+ execute(...){...}

Connector
Component

<< interface >>
1

1 Sequencer

+ compose() {... }
+ execute(...){...}

. . .

Connector top_connector

Pipe

+ compose() {... }
+ execute(...){...}

Fig. 3. Overall structure of a set of classes for constructing components

A builder tool in design phase is used to construct components. For an atomic com-
ponent, the computation unit is a Java class that implements the services and does not
call services outside itself. The builder tool specifies the computation unit name in the
source code of Invocation connector (compose method), and generates an atomic
component class which refers to the Invocation. For a composite component, it is
constructed by builder tool by specifying the top level connectors of the constituent
components in the source code of the composition connector. Because according to the

www.manaraa.com

Towards Composing Software Components in Both Design and Deployment Phases 279

hierarchical composition, the connection point for the sub component is always its top
level connector. The generated composite component class file refers to the top com-
position connector, which again serves as the connection point when this composite
component is connected by a higher level connector, so as to create a bigger composite
component.

Component interface specifies all the services provided by the component and de-
sired data for instantiation. An atomic component interface is given by the component
developer and presented in an XML format. The interface of a composite is generated
by the composition connector automatically in terms of the interfaces of the constituents
and the composition scheme.

The way to invoke a component is calling the top level connector (execute method)
with the method name and parameters. Internally it calls the lower level connector re-
cursively until it reaches a computation unit. One point worth noting is the components
in this phase are templates, therefore their behaviour is not fixed with specific set of
calling methods at this stage.

Currently, the component repository is a java file directory. In the next step, repos-
itory needs to be fully interacted with the builder tool and both of them need to be
enhanced to support (atomic or composite) component deposit after construction au-
tomatically and multiple copies of component retrieval. Besides, deployment contracts
specification needs to be integrated when the builder tool automates the construction of
components.

Deployment phase. For deployment composition we have a set of classes which in-
tegrate our composition framework (Fig.4 (a)). Deployment phase connectors are im-
plemented as a set of classes with the superclass DPConnector. Each subclass defines
a constructor to instantiate it, and overrides the execute method to implement its cor-
responding logic. A class System defines a valid composition in this phase. According
to our model, the class System holds a reference to deployment phase connector, which
represents the interface and the only access point to it.

Sytstem

− Sequencer sq;

+ SubsystemA()
+ Object execute (...)

Sytstem

SystemA

Sequencer

Pipe (...)

 Pipe

Selector (...)

(a)

...

(b)

Components
(.class)

Design
System

DPConnector
...

Object executeSubsystem(...)
Object execute(...)

1

Sequencer(...)

 Selector

Composition
Framework

Composition Framework

Composition

Fig. 4. (a) Our deployment phase composition framework and (b) its use to compose a System

To build a system, during the composition process we (re)use the binaries of the
components generated in the design phase, our composition framework, as well as the
design of the composition for the desired system (Fig.4 (b)). The result of the composi-
tion process is new class that extends System and declares a constructor containing the

www.manaraa.com

280 K.-K. Lau, L. Ling, and P.V. Elizondo

code for setting up the composition, and a execute for calling its top-level connector’s
to allow the system’s execution, e.g. sq.execute(...) when a Sequencer connector
sq is the top level connector of the SystemA shown in Fig.4 (b).

Making a system a new class allows to generate a binary that can be packaged as
a named, versioned, shippable and deployable unit. The final system is meant to be
deployed within a execution environment and eventually be executed on it.

In the current implementation, systems’ interfaces are generated as a XML file con-
taining very basic information such as the mechanisms to instantiate and execute it, but
it can be extended to include more detailed information for its proper deployment.

A system instantiated via its constructor and executed by calling its executemethod.
The executemethod contains a call to executeSubsystemmethod defined in the DP-
Connector superclass for each one of the components and/or subsystems it connects. In
the executeSubsystem, the hierarchical execution of each connected element is car-
ried out until reach the Invocation connectors of atomic components, where reflection
techniques are used to dynamically execute the required operation in their computation
units.

An Example. Consider a Drink Vending Machine System which serves different kinds
of drinks, i.e. coffee, juice and tea. Besides the traditional paying mechanism, it accepts
coinless dispensing of drinks to holders of drink cards. The architecture for this system
is shown in Fig.5 and it includes the atomic components: ProductManager and Receipe-
Manager –which deal with the drinks’ prices and recipes; CoinBox, CardReader –which
deal with paying for the drinks; and a set of Dispensers –which deal with the pouring
of ingredients during the drink making.2

SEL1

SQ3

P1

SQ4

P2

SL2

Coin
Box

Card
Reader

Product
Manager

Sugar
Dispenser

Tea
Dispenser

Water
Dispenser

SQ1 SQ2

Dispenser
OrangeJuice

Dispenser
Recipe

Manager

Sugar
Dispenser

Coffee
Dispenser

Water
Dispenser

Sugar

PaymentReceiver

Cashier

TeaMixer

DrinkMaker

Mixer
JuiceCoffeeMixer Orange

Mixer

Drink Vending Machine System

Fig. 5. Drink Vending Machine architecture

In the design phase, we build the composite Mixer by hierarchically composing the
dispenser components as depicted in Fig.5. The composite Mixer can deal with the mak-
ing of different drinks according to the top-level Selector condition’s provided value,
e.g. product name = “coffee”. Due to the Mixer encapsulates functionality suitable for
similar applications in the same domain, constructing it in the design phase and putting
it in the repository facilitates its further reuse.

2 Each one of these components is created at design phase by connecting a Invocation connector
to the Java class representing the corresponding computation unit.

www.manaraa.com

Towards Composing Software Components in Both Design and Deployment Phases 281

The Mixer can be compiled into a .class file, and reused at deployment-phase to
create the final system by firstly composing it with the RecipeManager, and then with
the Cashier subsystem –which has been composed from the CoinBox, CardReader and
ProductManager atomic components.

The interface of the final system exposes the way it can be instantiated and executed.
For buying a drink the product name, type of payment, amount or card number are
required.

4 Discussion and Conclusion

The advantages of composition in both phases composition are not present in current
component models. In most of these models, composition is carried out in the design
phase only (e.g. architecture description languages (ADLs), UML 2.0, PECOS, Pin,
Fractal, EJB, COM, CCM, Koala, SOFA and KobrA), leaving the deployment phase
with the only task of implementing what is defined in design phase [10]. In JavaBeans
and POJO [13], composition is carried out in the deployment phase only.

Our approach also allows design flexibility. Developers can choose either to build
up composite components in design phase for reuse purpose, or assemble components
with application specific configuration in the deployment phase. However, there is a bal-
ance between design and deployment phase composition. The former is carried out by
the component builder guided by domain knowledge for constructing reusable building
blocks; the latter is carried out by the system developer targeting particular applications
with environmental settings.

As future work, we intend to implement builder, repository and assembler tools to
automate the composition in both phases, as well as deployment tools. In addition, we
will investigate reference semantics where a constituent component is used by different
composite components, and the issue of further composition and deployment of the
component in such a scenario. We will also consider adaptation and re-configuration at
run-time, as in approaches such as Hadas [1] and Gravity [3].

References

1. Ben-Shaul, I., Holder, O., Lavva, B.: Dynamic adaptation and deployment of distributed
components in hadas. IEEE Trans. Softw. Eng. 27(9), 769–787 (2001)

2. Broy, M., Deimel, A., Henn, J., Koskimies, K., Plasil, F., Pomberger, G., Pree, W., Stal,
M., Szyperski, C.: What characterizes a (software) component? Software - Concepts and
Tools 19(1), 49–56 (1998)

3. Cervantes, H., Hall, R.S.: Autonomous adaptation to dynamic availability using a service-
oriented component model. In: Proc. ICSE04, pp. 614–623. IEEE Computer Society Press,
Los Alamitos (2004)

4. Christiansson, B., Jakobsson, L., Crnkovic, I.: CBD process. In: Crnkovic, I., Larsson, M.
(eds.) Building Reliable Component-Based Software Systems, pp. 89–113. Artech House
(2002)

5. Heineman, G.T., Councill, W.T.: Component-based software engineering: putting the pieces
together. Addison-Wesley, Reading (2001)

www.manaraa.com

282 K.-K. Lau, L. Ling, and P.V. Elizondo

6. Lau, K.-K.: Software component models. In: Proc. ICSE ’06, pp. 1081–1082. ACM Press,
New York (2006)

7. Lau, K.-K., Ornaghi, M., Wang, Z.: A software component model and its preliminary formal-
isation. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005.
LNCS, vol. 4111, pp. 1–21. Springer, Heidelberg (2006)

8. Lau, K.-K., Ukis, V.: Defining and checking deployment contracts for software components.
In: Gorton, I., Heineman, G.T., Crnkovic, I., Schmidt, H.W., Stafford, J.A., Szyperski, C.A.,
Wallnau, K. (eds.) CBSE 2006. LNCS, vol. 4063, pp. 1–16. Springer, Heidelberg (2006)

9. Lau, K.-K., Velasco Elizondo, P., Wang, Z.: Exogenous connectors for software components.
In: Heineman, G.T., Crnković, I., Schmidt, H.W., Stafford, J.A., Szyperski, C.A., Wallnau,
K. (eds.) CBSE 2005. LNCS, vol. 3489, pp. 90–106. Springer, Heidelberg (2005)

10. Lau, K.-K., Wang, Z.: A survey of software component models. 2nd edn., Pre-print
CSPP-38, School of Computer Science, The University of Manchester (May 2006)
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf

11. Lau, K.-K., Wang, Z.: A taxonomy of software component models. In: Crnkovic, I., Larsson,
M. (eds.) Proc. of 31st Euromicro Conference, pp. 88–95. IEEE Computer Society Press,
Los Alamitos (2005)

12. Meyer, B.: The grand challenge of trusted components. In: Proc. ICSE03, pp. 660–667. IEEE
Computer Society Press, Los Alamitos (2003)

13. Richardson, C.: POJOs in Action: Developing Enterprise Applications with Lightweight
Frameworks. Manning Publications Co., Greenwich, CT (2006)

14. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Pro-
gramming, 2nd edn. Addison-Wesley, Reading (2002)

http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp38.pdf

www.manaraa.com

Author Index

Bai, Xiaoying 258
Barais, Olivier 173
Bertolino, Antonia 124

Carśı, José Ángel 49
Chen, Yinong 258
Cortellessa, Vittorio 140
Costa, Cristóbal 49

Dahlgren, Tamara L. 157
Dai, Guilan 258
David, Pierre-Charles 242
Desnos, Nicolas 33

Folmer, Eelke 66
Fornasier, Patric 227

Gorton, Ian 74, 227
Grassi, Vincenzo 140

Huchard, Marianne 33

Lau, Kung-Kiu 1, 107, 274
Lemus, Cuauhtemoc 203
Ling, Ling 274
Liu, Yan 74

Mallick, Sudeep 211
Mazare, Sebastien 242
Montes de Oca, Carlos 203
Muccini, Henry 124
Mulugeta, Mesfin 90

Padilla, Gerardo 203
Pérez, Jennifer 49
Plášil, Frantǐsek 189
Plouzeau, Noël 173
Polakovic, Juraj 242
Polini, Andrea 124

Ricci, Fabiano 124

Saudrais, Sébastien 173
Schill, Alexander 90
Šerý, Ondřej 189
Stefani, Jean-Bernard 242
Subrahmanya, S.V. 211

Taweel, Faris M. 1
Tremblay, Guy 33
Tsai, Wei-Tek 258

Ukis, Vladyslav 107
Urtado, Christelle 33

van der Storm, Tijs 17
Vauttier, Sylvain 33
Velasco Elizondo, Perla 274

Wang, Yongbo 258
Webber, Jim 227

Zhu, Liming 74

	Title Page
	Preface
	Organization
	Table of Contents
	Data Encapsulation in Software Components
	Introduction
	Composition with Data Encapsulation
	Our Component Model
	Data Encapsulation
	Implementation
	Connectors and Components
	Data Encapsulation
	The Bank System

	Discussion and Related Work
	Conclusion
	References

	Binary Change Set Composition
	Introduction
	Background
	Requirements for Application Upgrade
	Related Work
	Overview of the Approach

	Binary Change Set Composition
	Incremental Integration
	Build and Release Model
	Prefix Composition
	Change Set Delivery
	Change Set Composition

	Implementation Using Subversion
	Composition by Shallow Copying
	Upgrade Is Workspace Switch
	Techniques for Relocatability

	Evaluation
	Experimental Validation
	Release Management Requirements
	Update Management Requirements

	Conclusion and Future Work
	References

	Automated and Unanticipated Flexible Component Substitution
	Introduction
	Context and Related Work
	Software Architecture Correctness and Completeness in CBSE
	Dynamic Architecture Reconfiguration

	Automated and Unanticipated Flexible Component Substitution
	Building Valid Component Assemblies from Port Enhanced Components
	Flexible Component Substitution Using the Automatic Building Process
	Re-building the Removed Part from the Architecture
	Implementation and Experimentation

	Conclusion
	References

	Dynamic Adaptation of Aspect-Oriented Components
	Introduction
	PRISMA
	MOF+Computational Reflection
	Dynamic Adaptation of Component Types
	Evolution of Component Types
	Evolution of Component Instances

	Related Works
	Conclusions and Further Work
	References

	Component Based Game Development – A Solution to Escalating Costs and Expanding Deadlines?
	Introduction
	A Reference Architecture for Games
	Areas of Reuse
	Problems with COTS Development
	Components Versus Frameworks
	Complexity and Architecture Design
	The “emerging” Architecture
	The Buy or Build Decision

	Conclusions and Future Research
	References

	Performance Assessment for e-Government Services: An Experience Report
	Introduction
	Performance Prediction Pragmatics
	Complexity of Service Architecture
	Complexity of the Web Service Scenarios
	Compositional Performance Assessment
	Difficulties in Performance Measurement

	Our Approach
	Defining the Project Goals
	Understanding the Web Service Architecture
	Understanding the Web Service Workload
	Constructing the Compositional Performance Model
	Obtain Parameter Values
	Analyzing the Results

	Lesson Learnt
	Prediction
	Measurement

	Conclusion and Future Work
	References

	An Approach for QoS Contract Negotiation in Distributed Component-Based Software
	Introduction
	Problem Formalization
	Single-Client - Single-Server Scenario
	Coarse-Grained Negotiation
	Fine-Grained Negotiation
	Algorithm Termination and Complexity

	Multiple-Clients Scenario
	Resource Allocation
	Policy Constraints
	Algorithm

	Example
	Related Work
	Conclusions and Outlook
	References

	A Study of Execution Environments for Software Components
	Introduction
	Execution Environments
	Properties of Interest

	Desktop Execution Environment
	Transient State Management
	ConcurrencyManagement
	Resource Availability
	Deploying Components into Desktop Execution Environment

	Web Execution Environment
	Transient State Management
	Transient State Management in Java Server Pages
	Transient State Management in Active Server Pages
	ConcurrencyManagement
	System Instantiation Modes
	Deploying Components into Web Execution Environment

	Discussion and Concluding Remarks
	References

	Monitoring Architectural Properties in Dynamic Component-Based Systems
	Introduction
	MOSAICO: A SA Property-Driven Monitoring Approach
	The Approach
	SA Specification
	Properties Specification
	The AOP Instrumentation and Monitoring Approach
	The Analyzer Engine

	The NewsFeeder Case Study
	The NewsFeeder Software Architecture Specification
	The NewsFeeder Properties Specification
	The NewsFeeder Instrumentation and Monitoring
	The NewsFeeder Analyzer Engine

	Related Work
	Conclusions and Future Work
	References

	A Modeling Approach to Analyze the Impact of Error Propagation on Reliability of Component-Based Systems
	Introduction
	Background
	Basic Concepts
	Component-Based System Failure Model
	RelatedWork

	Embedding the Error Propagation in a Reliability Model
	Sensitivity Analysis of Reliability
	Sensitivity with Respect to $ep()$'s
	Sensitivity with Respect to $intf()$'s

	Results and Analyses
	Impact of the Error Propagation: Experimental Results
	Sensitivity Analysis: Experimental Results

	Conclusions
	References

	Performance-Driven Interface Contract Enforcement for Scientific Components
	Introduction
	Motivation
	Enforcement Infrastructure
	Experiments
	Subjects
	Methodology
	Full Enforcement Results
	Performance-Driven Enforcement Results

	Related Work
	Future Work
	Summary
	References

	Integration of Time Issues into Component-Based Applications
	Scope and Objectives
	Analysis and Design
	Artifacts of the Process
	Abstract Implementation of an Architecture

	Adding Time Properties into Components
	Adding Time into Component’s Behaviour
	Adding Time into a Component Contract
	Checking Time PropertiesWhen Composing Components

	Related Work
	Conclusion and Perspectives
	References

	Slicing of Component Behavior Specification withRespect to Their Composition
	Introduction
	Behavior Protocols
	Goal and Structure of the Paper

	Reduction and Slicing of Behavior Protocols
	Reduction Preorder
	Minimal Reduction

	Slicing with Respect to Composition
	Tools and Case Study
	Related Work
	Conclusion
	References

	An Execution-Level Component Composition Model Based on Component Testing Information
	Introduction
	Related Works
	Component Test Records
	A Composition Model for Component Test Records
	Example

	Final Remarks and Future Work
	References

	Capturing Web Services Provider Constraints – An Algorithmic Approach
	Introduction
	SOA, Services and Web Services
	Formal Definition of (Web) Services
	Special Service Provider Configurations
	Specification of the Service Provider Constraints – AlgorithmicApproach
	Implementation of the Algorithm and the Tool
	Conclusion
	References

	Soya: A Programming Model and Runtime Environment for Component Composition Using SSDL
	Introduction
	Background and Motivation
	Why SSDL?
	SSDL Tool Support

	SSDL Language Features
	Soya
	Defining SSDL Contracts Using C\# Attributes
	Architecture and System Design
	Intelligent Message Dispatching

	Conclusion and Future Work
	References

	Experience with Safe Dynamic Reconfigurations in Component-Based Embedded Systems
	Introduction
	Use Case and Challenges
	Foundations: FRACTAL, THINK and FSCRIPT
	The FRACTAL Component Model
	THINK
	The FScript DSL

	Implementation and Results
	Implementing Support for FScript
	An Offline FScript Compiler

	Discussion
	Lessons Learned and Limitations
	Perspectives

	Related Work
	Conclusion
	References

	A Framework for Contract-Based Collaborative Verification and Validation of Web Services
	Introduction
	Related Work
	WS CV and V
	Contract-Based Testing

	Decentralized CV and V Architecture
	The Test Broker Architecture
	Test Broker Data Structure and Services
	Decentralized Test Brokers

	DCV and V Contracts
	Testing Service Contract
	Test Collaboration Contract

	Contract-Based Test Generation
	The Example Hotel Booking System
	Test Process Generation Based on Petri-Net

	Conclusion and Future Work
	References

	Towards Composing Software Components in Both Design and Deployment Phases
	Introduction
	An Idealised Component Life Cycle
	Towards Composition in Both Design and Deployment Phases
	Preliminary Implementation

	Discussion and Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /UseDeviceIndependentColorForImages
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

